K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2021

Bài toán này cho kết quả rất xấu, vì vậy nằm ngoài khả năng của học sinh lớp 8

Muốn giải thì phải sử dụng kĩ thuật miền giá trị, cần kiến thức delta của lớp 9

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 * Bài 2: Tìm...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ

 

8 tháng 3 2018

a. \(A+1=\dfrac{27-12x+x^2+9}{x^2+9}\)

\(\Rightarrow A+1=\dfrac{x^2-12x+36}{x^2+9}\)

\(\Rightarrow A+1=\dfrac{\left(x-6\right)^2}{x^2+9}\ge0\)

Min A+1 = 0

=> Min A = -1

Dấu = xảy ra khi và chỉ khi x = 6

\(4-A=\dfrac{4x^2+36-27+12x}{x^2+9}\)

\(4-A=\dfrac{4x^2+12x+9}{x^2+9}\)

\(4-A=\dfrac{\left(2x+3\right)^2}{x^2+9}\)

\(A=4-\dfrac{\left(2x+3\right)^2}{x^2+9}\le4\)

=> Max A= 4

Dấu = xảy ra khi và chỉ khi \(x=\dfrac{-3}{2}\)

8 tháng 3 2018

B=\(\dfrac{8x+3}{4x^2+1}=\dfrac{4x^2+8x+4-4x^2-1}{4x^2+1}\)

=\(\dfrac{\left(4x^2+8x+4\right)-\left(4x^2+1\right)}{4x^2+1}=\dfrac{4\left(x^2+2x+1\right)}{4x^2+1}-1\)

=\(\dfrac{4\left(x+1\right)^2}{4x^2+1}-1\)

=> Min B=-1 dấu = xảy ra khi x=-1

B=\(\dfrac{8x+3}{4x^2+1}=\dfrac{16x^2+4-16x^2+8x-1}{4x^2+1}\)

=\(\dfrac{\left(16x^2+4\right)-\left(16x^2-8x+1\right)}{4x^2+1}=\dfrac{4\left(4x^2+1\right)-\left(4x-1\right)^2}{4x^2+1}\)

=\(\dfrac{4\left(4x^2+1\right)}{4x^2+1}-\dfrac{\left(4x-1\right)^2}{4x^2+1}\)=\(4-\dfrac{\left(4x-1\right)^2}{4x^2+1}\)

=> Max B=4 dấu = xảy ra khi x=\(\dfrac{1}{4}\)

2 tháng 10 2017

\(P+1=\dfrac{8x+1}{4x^2+3}+1=\dfrac{8x+1+4x^2+3}{4x^2+3}=\dfrac{4\left(x+1\right)^2}{4x^2+3}\ge0\)\(P+1\ge0\Rightarrow P\ge-1\) tại x =-1

\(P-\dfrac{4}{3}=\dfrac{8x+1}{4x^2+3}-\dfrac{4}{3}=\dfrac{3.\left(8x+1\right)-4\left(4x^2+3\right)}{4x^2+3}=\dfrac{-\left(4x-3\right)^2}{4x^2+3}\le0\)

\(P-\dfrac{4}{3}\le0\Rightarrow P\le\dfrac{4}{3}\) khi x =3/4

23 tháng 11 2021

\(\left|2x-1\right|+3\ge3\Leftrightarrow\dfrac{3+\left|2x-1\right|}{14}\ge\dfrac{3}{14}\)

Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

\(\dfrac{-4x^2+4x}{15}=\dfrac{-4x^2+4x-1+1}{15}=\dfrac{-\left(2x-1\right)^2+1}{15}\)

Ta có \(-\left(2x-1\right)^2+1\le1\Leftrightarrow\dfrac{-\left(2x-1\right)^2+1}{15}\le\dfrac{1}{15}\)

Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

6 tháng 1 2021

I zì:vv

a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)

Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)

b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Vậy MaxB=21 khi x=-4

6 tháng 1 2021

mé vừa nộp lên biết nhầm dấu :(((

Thi chưa zợ? qua đâu buôn với t tí đi :((

NV
5 tháng 4 2021

a.

\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=2013\)

b.

\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)

\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)

\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)

\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

5 tháng 4 2021

em cảm ơn ạ

1 tháng 12 2021

\(A=\dfrac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\\ \Leftrightarrow Ax^2-4x+A-3=0\)

Coi đây là PT bậc 2 ẩn x thì PT có nghiệm

\(\Leftrightarrow\Delta=16-4A\left(A-3\right)\ge0\\ \Leftrightarrow16-4A^2+12A\ge0\\ \Leftrightarrow-A^2+3A+4\ge0\\ \Leftrightarrow-1\le A\le4\)

Vậy \(A_{max}=4;A_{min}=-1\)

\(A_{max}=4\Leftrightarrow\dfrac{4x+3}{x^2+1}=4\Leftrightarrow4x^2-4x+1=0\\ \Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\\ A_{min}=-1\Leftrightarrow\dfrac{4x+3}{x^2+1}=-1\Leftrightarrow x^2+1=-4x-3\Leftrightarrow x^2+4x+4=0\\ \Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)

1 tháng 5 2018

M=(8x+3)/(4x^2+1) 
M = ( - 4x^2 - 1 + 4x^2 + 8x + 4)/(4x^2 +1) 
M= -1 + (2x +2)^2/(4x^2 +1) ≥ -1 
=> min M = -1 khi x = -1 
mặt khác: 
M = -1 + (2x +2)^2/(4x^2 +1) 
M = 4 - 5 + (2x +2)^2/(4x^2 +1) 
M = 4 - ( 20x^2 + 5 - 4x^2 - 8x - 4)/(4x^2 +1) 
M = 4 - (16x^2 - 8x +1)/(4x^2 +1) 
M = 4 - (4x - 1)^2/(4x^2 +1) ≤ 4 
=> max M = 4 khi x = 1/4