K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2022

\(x^2 +5x+6=0\)

\(<=>x^2+3x+2x+6=0\)

\(<=>x(x+3)+2(x+3)=0\)

\(<=>(x+3)(x+2)=0\)

\(<=>\) $\begin{cases} x=-3\\x=-2 \end{cases}$

Vậy `S=`{`-3;-2`}

AH
Akai Haruma
Giáo viên
6 tháng 9 2022

Lời giải:

$x^2+5x+6=0$

$\Leftrightarrow (x^2+2x)+(3x+6)=0$

$\Leftrightarrow x(x+2)+3(x+2)=0$

$\Leftrightarrow (x+2)(x+3)=0$

$\Leftrightarrow x+2=0$ hoặc $x+3=0$

$\Leftrightarrow x=-2$ hoặc $x=-3$

a: =>(x^2-1)(x^2-4)=0

=>(x-1)(x+1)(x-2)(x+2)=0

=>\(x\in\left\{1;-1;2;-2\right\}\)

b: =>2x^4-4x^2+x^2-2=0

=>(x^2-2)(2x^2+1)=0

=>x^2-2=0

=>\(x=\pm\sqrt{2}\)

c: =>(căn x-6)(căn x+1)=0

=>căn x-6=0

=>x=36

10 tháng 5 2020

\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)=40\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+5+3\right)=40\)

\(\Leftrightarrow p\left(p+3\right)=40\) (khi đặt \(\left(x^2+6x+5\right)=p\)

\(\Leftrightarrow p^2+3p=40\)

\(\Leftrightarrow p^2\cdot2\cdot p\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2=\frac{169}{4}\)

\(\Leftrightarrow\left(p+\frac{3}{2}\right)^2-\left(\frac{13}{2}\right)^2=0\)

\(\Leftrightarrow\left(p+\frac{3}{2}-\frac{13}{2}\right)\left(p+\frac{3}{2}+\frac{13}{2}\right)=0\)

\(\Leftrightarrow\left(p-5\right)\left(p+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}p=5\\p=-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+6x+5=5\\x^2+6x+5=-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+6x=0\\x^2+2\cdot x\cdot3+9-9+5=-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\left(x+6\right)=0\\\left(x+3\right)^2=-4\left(\text{vôlí}\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)

10 tháng 5 2020

\(\left(x-2\right)\left(x^2+5x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x^2+5x-7=0\end{cases}}\)

Ta có: \(\Delta=25-4\cdot\left(-7\right)=25+28=53\)

\(\Rightarrow\Delta>0\)

\(\Rightarrow\text{pt có 2 nghiệm pb}\)

\(\Rightarrow\hept{\begin{cases}x_1=\frac{-5-\sqrt{53}}{2}\\x_2=\frac{-5+\sqrt{53}}{2}\end{cases}}\)

\(\text{Vậy pt trên có nghiệm là x=2; x=}\frac{-5\pm\sqrt{53}}{2}\)

18 tháng 4 2019

x= 1 nha bạn

18 tháng 4 2019

trả lời cho hẳn hoi vào

giải ra ý

NV
19 tháng 1 2022

\(\Leftrightarrow\left(2x-1\right)\left[\left(5x-3\right)-\left(2x-1\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Δ=(2m-2)^2-4(m^2+m-2)

=4m^2-8m+4-4m^2-4m+8

=-12m+12

Để phương trình có hai nghiệm thì -12m+12>=0

=>m<=1

x1^2=6-x2^2-x1x2

=>(x1+x2)^2-2x1x2+x1x2=6

=>(x1+x2)^2-x1x2=6

=>(2m-2)^2-2(m^2+m-2)-6=0

=>4m^2-8m+4-2m^2-2m+4-6=0

=>2m^2-10m+2=0

=>\(m=\dfrac{5\pm\sqrt{21}}{2}\)

2 tháng 4 2023

`4x^2 +4(x+6)^2=60^2`

`<=>4x^2 +4(x^2 + 12x + 36)=3600`

`<=> 4x^2 +4x^2 + 48x +144=3600`

`<=> 8x^2 + 48x + 144-3600=0`

`<=> 8x^2 + 48x -3456=0`

`<=> 8(x^2+6x-432)=0`

`<=>8(x^2+24x-18x-432)=0`

`<=> 8 (x-18)(x+24)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-18=0\\x+24=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\\x=-24\end{matrix}\right.\)

9 tháng 4 2021

1.

A có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}x-y-2=0\\7x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\Rightarrow A=\left(-1;-3\right)\)

Phương trình đường thẳng AB: \(\dfrac{x+1}{-5}=\dfrac{y+3}{7}\Leftrightarrow7x-5y+22=0\)

Đường thẳng BC đi qua B và vuông góc với AH có phương trình: \(x+7y-22=0\)

 

13 tháng 2 2023

\(xy^2-2xy+x+y^2=6\Leftrightarrow x\left(y^2-2y+1\right)+y^2-1=5\)

\(\Leftrightarrow x\left(y-1\right)^2+\left(y-1\right)\left(y+1\right)=5\)

\(\Leftrightarrow\left(y-1\right)\left(xy-x+y+1\right)=5\)

\(Ư\left(5\right)=\left(-5;-1;1;5\right)\)

y-1-5-115
y-4026
xy-x+y+1-1-551
x-2/562-6/5

 

Vì \(x;y\in Z\Rightarrow\left[{}\begin{matrix}\left(x;y\right)=\left(6;0\right)\\\left(x;y\right)=\left(2;2\right)\end{matrix}\right. \)

 

a: \(\text{Δ}=\left(-5\right)^2-4\left(-2m+5\right)\)

=25+8m-20=8m+5

Để phương trình có nghiệm kép thì 8m+5=0

=>m=-5/8

=>x^2-5x+25/4=0

=>x=5/2

b: \(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2m+3\right)\)

\(=4m^2-4m+1-4m^2+8m-12=4m-11\)

Để phương trình có nghiệm kép thì 4m-11=0

=>m=11/4

=>x^2-9/2x+81/16=0

=>x=9/4

c: TH1: m=-3

=>-(2*(-3)+1)x+(-3-1)=0

=>-(-5x)-4=0

=>5x-4=0

=>x=4/5(nhận)

TH2: m<>-3

\(\text{Δ}=\left(2m+1\right)^2-4\left(m+3\right)\left(m-1\right)\)

\(=4m^2+4m+1-4\left(m^2+2m-3\right)\)

\(=4m^2+4m+1-4m^2-8m+12=-4m+13\)

Để phương trình có nghiệm kép thì -4m+13=0

=>m=13/4

=>25/4x^2-15/2x+9/4=0

=>(5/2x-3/2)^2=0

=>x=3/2:5/2=3/2*2/5=3/5