Tìm số tự nhiên a biết 2a+11 chia hết cho 2a+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2a+11⋮2a+1\)
\(\Leftrightarrow2a+1+10⋮2a+1\)
\(\Leftrightarrow2a+1\in\left\{1;5\right\}\)(vì a là số tự nhiên)
hay \(a\in\left\{0;2\right\}\)
Cách của em đúng rồi đó , nhưng em còn cách này tiện hơn nefk
2n + 11 ⋮ 2n + 1 <=> ( 2n +1 ) + 10 ⋮ 2n + 1 hay 10 ⋮ 2n + 1
=> 2n + 1 thuộc ước của 10 là 1 ; 2 ; 5 ; 10
Mà 2n + 1 lẻ => 2n + 1 = { 1 ; 5 } =>2n = { 0 ; 4 } => n = { 0 ; 2 }
cảm ơn anh đã trả lời em anh hỏi bạn của anh giúp em được không ạ
ta có : (2a+11) chia hết cho (2a+1)
\(\Rightarrow\)(2a+1)+10 chia hết cho (2a+1)
\(\Rightarrow\)10 chia hết cho (2a+1)hay (2a+1)\(\in\)Ư(10)={1;2;5;10}
với 2a+1=1 thì a =0
với 2a+1=2 thì a = 1/2(không thoả mãn)
với 2a+1 = 5 thì a = 2
với 2a+1=10 thì a = 4.5 ( không thoả mãn)
cách của em làm cũng đúng nhung em có thể tham khảo cách mk vừa làm. mk nghĩ cách của mk sẽ nhanh hơn đấy
6a+13 \(⋮\)2a+1
=>3.2a+13\(⋮\)2a+1
=>3.(2a+1)+10\(⋮\)2a+1
=>10\(⋮\)2a+1
=>2a+1 \(\in\)Ư(10)={1;2;5;10}
=>2a \(\in\){0;1;4;9}
vì 2a\(⋮\) 2
=> 2a\(\in\){0;4}
=>a\(\in\){0;2}
vậy a\(\in\){0;2}
6a+13 chia hết cho 2a+1
Có: (2a+1).3 chia hết cho 2a+1 => 6a+3 chia hết cho 2a+1
=> [(6a+13)-(6a+3)] chia hết cho 2a+1
=> (6a+13-6a-3) chia hết cho 2a+1
=> 2a+1 thuộc Ư(10)={ 1; -1; 2; -2; 5; -5; 10; -10 }
Ta lập bảng giá trị:
2a+1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
a | 1 | 0 | n không thuộc N | n không thuộc N | 2 | -3 | n không thuộc N | n không thuộc N |
ta có \(\left(2.a+7\right)⋮\left(2.a+1\right)\)
\(\Rightarrow\left(2.a+1+6\right)⋮\left(2.a+1\right)\)
do \(\left(2.a+1\right)⋮\left(2.a+1\right)\)nên \(6⋮\left(2.a+1\right)\)
\(\Rightarrow\left(2.a+1\right)\inƯ\left(6\right)=\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
rồi bạn kẻ bảng là xong
Ta có: 2a+11=(2a+1)+10
Vì 2a+11 chia hết cho 2a+1 nên 10 cũng chia hết cho a+1(10 thuộc N)
=>Ư(10)=a+1={1;2;5;10}
...................