Tìm x:
(x2+ x)2+ 4(x2+x)=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: x 2 = 2 2 nên x = 2.
b) Ta có: x 2 = 5 2 nên x = 5.
c) Ta có: 3 x 5 = 3 nên x 5 = 1 . Do đó x = 1.
d) Ta có: 6 x 3 = 48 nên x 3 = 8 . Do đó x = 2.
e) Ta có: x - 1 2 = 2 2 nên x - 1 = 2 . Do đó x = 3.
f) Ta có: x + 1 2 = 5 2 nên x +1 = 5. Do đó x = 4.
g) Ta có: x - 1 3 = 3 3 nên x - 1 = 3 . Do đó x = 4.
h) Ta có: x + 1 3 = 4 3 nên x +1 = 4. Do đó x = 3
b: \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
a: \(=\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b: \(=\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x-1}\)
c: \(=\dfrac{x+2}{x\left(x-2\right)}+\dfrac{2}{x\left(x+2\right)}+\dfrac{3x+2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+2x+2x-4+3x+2}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+7x-2}{x\left(x-2\right)\left(x+2\right)}\)
a,
\(\dfrac{x+1}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\\ =\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b,
\(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\\ =\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{x-1}\)
c: Ta có: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Leftrightarrow x\left(3x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
\(a,\Leftrightarrow x^2+8x+16-x^3-12x^2=16\\ \Leftrightarrow x^3+11x^2-8x=0\\ \Leftrightarrow x\left(x^2+11x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+11x-8=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=121+32=153\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11-3\sqrt{17}}{2}\\x=\dfrac{-11+3\sqrt{17}}{2}\end{matrix}\right.\\ S=\left\{0;\dfrac{-11-3\sqrt{17}}{2};\dfrac{-11+3\sqrt{17}}{2}\right\}\)
\(c,\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\\ \Leftrightarrow3x^2+26x=0\\ \Leftrightarrow x\left(3x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\\ d,\Leftrightarrow x^3-6x^2+12x-8-x^3-125-6x^2=11\\ \Leftrightarrow-12x^2+12x-144=0\\ \Leftrightarrow x^2-x+12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)
Ta có
( x 2 + x ) 2 + 4 x 2 + 4 x - 12 = x 2 + x 2 + 4 x 2 + x - 12
Đặt t = x 2 + x ta được
t 2 + 4 t – 12 = t 2 + 6 t – 2 t – 12 = t ( t + 6 ) – 2 ( t + 6 ) = ( t – 2 ) ( t + 6 ) = ( x 2 + x – 2 ) ( x 2 + x + 6 )
Vậy số cần điền là 6.
Đáp án cần chọn là: D
Lời giải:
a.
$|2x-5|=12-3x$
Nếu $x\geq \frac{5}{2}$ thì $2x-5=12-3x$
$\Leftrightarrow x=3,4$ (thỏa mãn)
Nếu $x< \frac{5}{2}$ thì: $5-2x=12-3x$
$\Leftrightarrow x=7$ (loại)
Vậy......
b.
$4x=|x+1|+|x+2|+|x+3|\geq 0$
$\Rightarrow x\geq 0$
Do đó: $|x+1|+|x+2|+|x+3|=(x+1)+(x+2)+(x+3)=3x+6$
Vậy: $3x+6=4x$
$\Leftrightarrow x=6$ (thỏa mãn)
c.
$|x^2+|x+2||=x^2+3$
$\Leftrightarrow x^2+|x+2|=x^2+3$
$\Leftrightarrow |x+2|=3$
$\Leftrightarrow x+2=3$ hoặc $x+2=-3$
$\Leftrightarrow x=1$ hoặc $x=-5$
d.
$|x^2-3|=6$
$\Leftrightarrow x^2-3=6$ hoặc $x^2-3=-6$
$\Leftrightarrow x^2=9$ (chọn) hoặc $x^2=-3< 0$ (loại)
$\Leftrightarrow x=\pm 3$
a)
⇔ \(x^2-16=9\)
⇔ \(x^2=25\)
⇔ \(x=\pm5\)
b)
⇔ \(x^2-4x+4-25x^2+20x-4=0\)
⇔ \(16x-24x^2=0\)
⇔ \(8x\left(2-3x\right)=0\)
⇒ \(\left[{}\begin{matrix}x=0\\2-3x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=\dfrac{2}{3}\)
c)
⇔ \(3x^2-10x-20=0\)
⇔ \(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{205}{9}=0\)
⇔ \(\left(x-\dfrac{5}{3}\right)^2=\dfrac{205}{9}\)
⇒ \(\left[{}\begin{matrix}x-\dfrac{5}{3}=\sqrt{\dfrac{205}{9}}\\x-\dfrac{5}{3}=-\sqrt{\dfrac{205}{9}}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\\x=-\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\\\text{x}=-\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\end{matrix}\right.\)
Vậy...
d)
⇔ \(\left(x^2+x\right)^2-49=\left(x^2+x\right)^2-7x\)
⇔ 7x = 49
⇔ x=7
Vậy...
`#3107`
`a)`
`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`
`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`
`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`
`= (12x + y - 2)(2 - y + 2 + y)`
`= (12x + y - 2)*4`
`= 48x + 4y - 8`
`b)`
\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)
`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`
`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`
`= - 51`
`c)`
\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)
`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`
`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`
`= 1`
`d)`
\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)
`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`
`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`
`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`
`= x^6 + 16x^4 - 24x^2 - 128`
\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\\ \left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)
đặt x^2+x là t ta có
\(t^2+4t-12=0\\ t^2+6t-2t-12=0\\ t\left(t+6\right)-2\left(t+6\right)=0\\ \left(t+6\right)\left(t-2\right)=0\\ \left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
có x^2+x+6 luôn lớn hơn 0 nên loại
\(x^2+x-2=0\\ x^2+2x-x-2=0\\ x\left(x+2\right)-\left(x+2\right)=0\\ \left(x+2\right)\left(x-1\right)=0\\ \left[{}\begin{matrix}x+2=0< =>x=-2\\x-1=0< =>x=1\end{matrix}\right.\)
=>(x^2+x)^2+4(x^2+x)-12=0
=>(x^2+x+6)(x^2+x-2)=0
=>(x+2)(x-1)=0
=>x=1 hoặc x=-2
x= 1 và x= -2
mình cần cách giải