Gọi S là điểm chính giữa của cung AB trên đtròn (O). Trên dây AB lấy 2 điểm E và H. Các đường thẳng SH, SE gặp đtròn tại C và D. Chứng minh rằng EHCD nội tiếp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S\) là điểm chính giữa cung \(\widehat{AB}\)
\(\Rightarrow\widehat{SA}=\widehat{SB}\left(1\right)\)
\(\widehat{DEB}=\dfrac{1}{2}\left(sđ\widehat{DCB}+sd\widehat{AS}\right)\)( tính chất có đỉnh ở bên trong đường tròn ) \(\left(2\right)\)
\(\widehat{DCS}=\dfrac{1}{2}sđ\widehat{DAS}\) ( tính chất góc nội tiếp ) hay \(\widehat{DCS}=\dfrac{1}{2}\left(sđ\widehat{DA}+sd\widehat{SA}\right)\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{DEB}+\widehat{DCS}=\dfrac{1}{2}\left(sđ\widehat{DCB}+sd\widehat{AS}+sd\widehat{DA}+sđ\widehat{SA}\right)\left(4\right)\)
Từ \(\left(1\right);\left(4\right)\Rightarrow\widehat{DEB}+\widehat{DCS}=\dfrac{1}{2}\left(sđ\widehat{DCB}+sđ\widehat{SA}+sđ\widehat{DA}+sđ\widehat{BS}\right)=\dfrac{360^o}{2}=180^o\)
Hay \(\widehat{DEH}+\widehat{DCH}=180^o\)
Vậy: tứ giác EHCD nội tiếp được trong một đường tròn.