K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

Khó dữ vậy trời

27 tháng 12 2016

bài này khó quá chắc mình không giải được rồi

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:

a)

\(\frac{\sin a}{1+\cos a}+\cot a=\frac{\sin a}{1+\cos a}+\frac{\cos a}{\sin a}=\frac{\sin ^2a+\cos^2a+\cos a}{\sin a(1+\cos a)}\)

\(=\frac{1+\cos a}{\sin a(1+\cos a)}=\frac{1}{\sin a}\) (đpcm)

b)

\(\frac{1}{\cos a}-\frac{\cos a}{1+\sin a}=\frac{1+\sin a-\cos ^2a}{\cos a(1+\sin a)}=\frac{(1-\cos ^2a)+\sin a}{\cos a(\sin a+1)}\)

\(=\frac{\sin^2a+\sin a}{\cos a(\sin a+1)}=\frac{\sin a(\sin a+1)}{\cos a(\sin a+1)}=\frac{\sin a}{\cos a}=\tan a\) (đpcm)

c)

\(\frac{\tan a-\sin a}{\sin ^3a}=\frac{\frac{\sin a}{\cos a}-\sin a}{\sin ^3a}=\frac{\frac{1}{\cos a}-1}{\sin ^2a}=\frac{1-\cos a}{\cos a\sin ^2a}=\frac{1-\cos a}{\cos a(1-\cos ^2a)}=\frac{1}{\cos a(1+\cos a)}\)

d)

\(\frac{\sin a+\cos a-1}{\sin a-\cos a+1}=\frac{(\sin a+\cos a-1)(\sin a+\cos a+1)}{(\sin a-\cos a+1)(\sin a+\cos a+1)}=\frac{(\sin a+\cos a)^2-1}{(\sin a+1)^2-\cos ^2a}\)

\(=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-\cos ^2a}=\frac{1+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-(1-\sin ^2a)}\)

\(=\frac{2\sin a\cos a}{2\sin ^2a+2\sin a}=\frac{2\sin a\cos a}{2\sin a(\sin a+1)}=\frac{\cos a}{1+\sin a}\) (đpcm)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Mấu chốt trong các bài này là việc sử dụng công thức $\sin ^2a+\cos ^2a=1$

NV
14 tháng 8 2020

4.

\(\left\{{}\begin{matrix}cos^22x\ge0\\cos^23x\ge0\\cos^24x\ge0\end{matrix}\right.\) với mọi x

\(\Rightarrow cos^22x+cos^23x+cos^24x\ge0\) với mọi x

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}cos2x=0\\cos3x=0\\cos4x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cos2x=0\\cos3x=0\\2cos^22x-1=0\end{matrix}\right.\)

Nếu \(cos2x=0\Rightarrow2cos^22x-1=-1\ne0\)

\(\Rightarrow\) Pt đã cho vô nghiệm

NV
14 tháng 8 2020

3.

Ta có: \(\left\{{}\begin{matrix}cos^2x\ge0\\cos^22x\ge0\\cos^23x\ge0\end{matrix}\right.\) với mọi x

\(\Rightarrow cos^2x+cos^22x+cos^23x\ge0\) với mọi x

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}cosx=0\\cos2x=0\\cos3x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx=0\\2cos^2x-1=0\\cos3x=0\end{matrix}\right.\)

Pt vô nghiệm (do nghiệm của pt thứ nhất ko thể là nghiệm của pt thứ 2)

NV
13 tháng 6 2020

Sử dụng công thức \(cosx.cosy=\frac{1}{2}\left(cos\left(x+y\right)+cos\left(x-y\right)\right)\) với 2 cái cos cuối cùng

13 tháng 6 2020

làm sao để từ b1-b2 đc vậy ạ

9 tháng 11 2018

a) \(sin^6x+cos^6x+3sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cox^2x+cos^4x\right)+3sin^2x.cos^2x\)

\(=sin^4x-sin^2x.cox^2x+cos^4x+3sin^2x.cos^2x\)

\(=sin^4x+2sin^2x.cox^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\text{​​}\text{​}\)

b) \(sin^4x-cos^4x-\left(sinx+cosx\right)\left(sinx-cosx\right)\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)\)

\(=1\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)=0\)

c) \(cos^2x+tan^2x.cos^2x\)

\(=cos^2x+\dfrac{sin^2x}{cos^2x}.cos^2x=sin^2x+cos^2x=1\)

NV
17 tháng 6 2020

\(\frac{1+cosx-sinx}{1-cosx-sinx}=\frac{1+2cos^2\frac{x}{2}-1-2sin\frac{x}{2}.cos\frac{x}{2}}{1-1+2sin^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}=\frac{2cos^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}{2sin^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}\)

\(=\frac{-2cos\frac{x}{2}\left(sin\frac{x}{2}-cos\frac{x}{2}\right)}{2sin\frac{x}{2}\left(sin\frac{x}{2}-cos\frac{x}{2}\right)}=\frac{-cos\frac{x}{2}}{sin\frac{x}{2}}=-cot\frac{x}{2}\)