K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 4 2022

\(y'=4x^3-4mx\Rightarrow y'\left(1\right)=4-4m\)

\(A\left(1;1-m\right)\)

Phương trình tiếp tuyến d tại A có dạng:

\(y=\left(4-4m\right)\left(x-1\right)+1-m\)

\(\Leftrightarrow\left(4-4m\right)x-y+3m-3=0\)

\(d\left(B;d\right)=\dfrac{\left|\dfrac{3}{4}\left(4-4m\right)-1+3m-3\right|}{\sqrt{\left(4-4m\right)^2+1}}=\dfrac{1}{\sqrt{\left(4-4m\right)^2+1}}\le1\)

Dấu "=" xảy ra khi và chỉ khi \(4-4m=0\Rightarrow m=1\)

29 tháng 5 2022

y′=4x3−4mx⇒y′(1)=4−4my′=4x3−4mx⇒y′(1)=4−4m

A(1;1−m)A(1;1−m)

Phương trình tiếp tuyến d tại A có dạng:

y=(4−4m)(x−1)+1−my=(4−4m)(x−1)+1−m

⇔(4−4m)x−y+3m−3=0⇔(4−4m)x−y+3m−3=0

d(B;d)=∣∣∣34(4−4m)−1+3m−3∣∣∣√(4−4m)2+1=1√(4−4m)2+1≤1d(B;d)=|34(4−4m)−1+3m−3|(4−4m)2+1=1(4−4m)2+1≤1

Dấu "=" xảy ra khi và chỉ khi 4−4m=0⇒m=1

a: -1<=sin x<=1

=>-1+3<=sin x+3<=1+3

=>2<=sinx+3<=4

=>\(\dfrac{1}{2}>=\dfrac{1}{sinx+3}>=\dfrac{1}{4}\)

=>\(2>=\dfrac{4}{sinx+3}>=1\)

=>\(-2< =-\dfrac{4}{sinx+3}< =-1\)

=>-2+3<=y<=-1+3

=>1<=y<=2

y=1 khi \(\dfrac{-4}{sinx+3}+3=1\)

=>\(\dfrac{-4}{sinx+3}=-2\)

=>sinx+3=2

=>sin x=-1

=>x=-pi/2+k2pi

y=3 khi sin x=1

=>x=pi/2+k2pi

b: -1<=cosx<=1

=>4>=-4cosx>=-4

=>9>=-4cosx+5>=1

=>2/9<=2/5-4cosx<=2

=>2/9<=y<=2

\(y_{min}=\dfrac{2}{9}\) khi \(\dfrac{2}{5-4cosx}=\dfrac{2}{9}\)

=>\(5-4\cdot cosx=9\)

=>4*cosx=4

=>cosx=1

=>x=k2pi

y max khi cosx=-1

=>x=pi+k2pi

c: \(0< =cos^2x< =1\)

=>\(0< =2\cdot cos^2x< =2\)

=>\(-1< =y< =2\)

y min=-1 khi cos^2x=0

=>x=pi/2+kpi

y max=2 khi cos^2x=1

=>sin^2x=0

=>x=kpi

 

b: Ta có: \(B=-x^2-y^2+2x-6y+9\)

\(=-\left(x^2-2x+y^2+6y-9\right)\)

\(=-\left(x^2-2x+1+y^2+6y+9-19\right)\)

\(=-\left(x-1\right)^2-\left(y+3\right)^2+19\le19\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=-3

9 tháng 8 2017

giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0

=> giá trị tuyệt đối x+10 cộng với 2005

sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005

Dấu bằng xảy ra <=> giá trị tuyệt đối x+10  bằng 0

=> x=-10

Vậy Min B = 2005 <=> x=-10

9 tháng 8 2017

i khó hỉu quá bn giải cả 2 câu nhé

19 tháng 9 2016

giúp mk vs

20 tháng 9 2021

a) Do \(\left|x\right|\ge0\)

\(\Rightarrow A=\left|x\right|+5\ge5\)

\(minA=5\Leftrightarrow x=0\)

b) Do \(\left|x-\dfrac{2}{3}\right|\ge0\)

\(\Rightarrow B=\left|x-\dfrac{2}{3}\right|-4\ge-4\)

\(minB=-4\Leftrightarrow x=\dfrac{2}{3}\)

c) Do \(\left|3x-1\right|\ge0\)

\(\Rightarrow C=\left|3x-1\right|-\dfrac{1}{2}\ge-\dfrac{1}{2}\)

\(minC=-\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{3}\)

20 tháng 9 2021

\(A=\left|x\right|+5\ge5\)

Dấu \("="\Leftrightarrow x=0\)

\(B=\left|x-\dfrac{2}{3}\right|-4\ge-4\)

Dấu \("="\Leftrightarrow x-\dfrac{2}{3}=0\Leftrightarrow x=\dfrac{2}{3}\)

\(C=\left|3x-1\right|-\dfrac{1}{2}\ge-\dfrac{1}{2}\)

Dấu \("="\Leftrightarrow3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)

Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.

$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học

$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)

Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$

$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky

$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$

Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$

c. ĐKXĐ: $-2\leq x\leq 2$

$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky

$\Leftrightarrow y^2\leq 8$

$\Leftrightarrow y\leq 2\sqrt{2}$

Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$

Mặt khác:

$x\geq -2$

$\sqrt{4-x^2}\geq 0$

$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$