giải hệ phương trình x^2+2xy-8y^2-6x+18y-7=0
2x^2-5xy-10y^2-3x+3y+7=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Điều kiện: \(y\ge0\)
pt thứ nhất của hệ \(\Leftrightarrow\left(y-x+3\right)^2=0\) \(\Leftrightarrow y-x+3=0\) \(\Leftrightarrow y=x-3\)
Thay vào pt thứ hai của hệ, ta được \(2x^2+3x+x-3-\left(3x+1\right)\sqrt{x-3}-2=0\)
\(\Leftrightarrow2x^2+4x-5=\left(3x+1\right)\sqrt{x-3}\) \(\left(x\ge3\right)\)
\(\Rightarrow\left(2x^2+4x-5\right)^2=\left[\left(3x+1\right)\sqrt{x-3}\right]^2\)
\(\Leftrightarrow4x^4+16x^2+25+16x^3-20x^2-40x=\left(3x+1\right)^2\left(x-3\right)\)
\(\Leftrightarrow4x^4+16x^3-4x^2-40x+25=9x^3-21x^2-17x-3\)
\(\Leftrightarrow4x^4+7x^3+17x^2-23x+28=0\)
Đặt \(f\left(x\right)=4x^4+7x^3+17x^2-23x+28\)
\(f\left(x\right)=4x^4+7x^3+17x^2+4+4+...+4-23x+4\) (có 6 số 4 ở giữa)
\(f\left(x\right)\ge9\sqrt[9]{4x^4.7x^3.17x^2.4^6}-23x+4\) \(=\left(9\sqrt[9]{1949696}-23\right)x+4\)
Hiển nhiên \(9\sqrt[9]{1949696}>23\). Lại có \(x\ge3\) nên \(f\left(x\right)>0\), Như vậy pt \(f\left(x\right)=0\) vô nghiệm. Điều đó có nghĩa là phương trình đã cho vô nghiệm.
a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 3,b = 4,c = 21\)
Ta có \({a^2} + {b^2} - c = 9 + 16 - 21 = 4 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(3;4)\) và có bán kính \(R = \sqrt 4 = 2\)
b) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b = - 2,c = 2\)
Ta có \({a^2} + {b^2} - c = 1 + 4 - 2 = 3 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1; - 2)\) và có bán kính \(R = \sqrt 3 \)
c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2},b = - 1,c = 7\)
Ta có \({a^2} + {b^2} - c = \frac{9}{4} + 1 - 7 = - \frac{{15}}{4} < 0\). Vậy đây không là phương trình đường tròn.
d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn.
Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0
=> 6x2 - 21x - (6x2 + x - 90x - 15) - 2010 = 0
=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0
=> 68x - 1995 = 0
?
b) 2x(x - 2012) - x + 2012 = 0
=> 2x(x - 2012) - (x - 2012) = 0
=> (x - 2012) (2x - 1) = 0
⇔[
x−2012=0 |
2x−1=0 |
⇔[
x=2012 |
2x=1 |
⇔[
x=2012 |
x=12 |
Vậy x = {2012;12 }
Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0
=> 6x2 - 21x - (6x2 + x - 90x - 15) - 2010 = 0
=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0
=> 68x - 1995 = 0
?
b) 2x(x - 2012) - x + 2012 = 0
=> 2x(x - 2012) - (x - 2012) = 0
=> (x - 2012) (2x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2012=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2012\\2x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2012\\x=\frac{1}{2}\end{cases}}\)
Vậy x = \(\left\{2012;\frac{1}{2}\right\}\)