K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2022

Ta có \(\left(x-5\right)^4+\left(x-2\right)^4=1^4+2^4=2^4+1^4\)

TH1 \(\left\{{}\begin{matrix}\left(x-5\right)^4=1^4\\\left(x-2\right)^4=2^4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-5=1\\x-5=-1\end{matrix}\right.\\\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6\\x=4\end{matrix}\right.\\\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\end{matrix}\right.\)

TH2 \(\left\{{}\begin{matrix}\left(x-5\right)^4=2^4\\\left(x-2\right)^4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\\\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\end{matrix}\right.\)

28 tháng 8 2022

Đặt x−72=a. Khi đó PT trở thành:

(a−32)4+(a+32)4=17

⇔2a4+27a2+818=17

⇔2a4+27a2=558

⇔a4+272a2=5516

⇔(a2+274)2=49

⇒[a2+274=7a2+274=−7<0(vô lý)

⇒a2=14⇒a=±12

28 tháng 1 2016

Ta cm BĐT :

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

<=> \(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac\ge0\)

<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng với mọi a ; b; c )

Dấu '' = '' BĐT xảy ra khi a =b =c 

(*) ÁP dụng BĐT với \(a=x^2;b=x;c=1\) ta có

( VẾ trái ) = \(\left(x^2+x+1\right)^2\le3\left[\left(x^2\right)^2+x^2+1\right]=3\left(x^4+X^2+1\right)=\left(vế\right)phải\)

Dấu ' = '' xảy ra khi \(x^2=x=1\Leftrightarrow x=1\)

Vậy pt có n* duy nhất là 1 

16 tháng 9 2018

\(\frac{x^4-5x+4}{x^2-2}=5\left(x-1\right)\)

\(\Leftrightarrow\frac{x^4-5x+4}{x^2-2}\left(x^2-2\right)=5\left(x-1\right)\left(x^2-2\right)\)

\(\Leftrightarrow x^4-5x+4=5\left(x-1\right)\left(x^2-2\right)\)

\(\Rightarrow\hept{\begin{cases}x=\pm1\\x=2\\x=3\end{cases}}\)

P/s: ko chắc

16 tháng 9 2018

ĐKXĐ : X2 \(\ne\)2

Ta có: \(\frac{x^4-5x+4}{x^2-2}\)\(5\left(x-1\right)\)\(\Leftrightarrow\frac{\left(x-1\right)\left(x^3+x^2+x-4\right)}{x^2-2}=5\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x^3+x^2+x-4}{x^2-2}-5\right)\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\frac{x^3+x^2+x-4}{x^2-2}-5=0\end{cases}}\)

\(+x-1=0\Rightarrow x=1\)

+)\(\frac{x^3+x^2+x-4}{x^2-2}-5=0\Leftrightarrow x^3+x^2+x-4-5x^2+10=0\)

\(\Leftrightarrow x^3-4x^2+x+6=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x-3\right)=0\)\(\Leftrightarrow x=2\)hoặc \(x=3\)

hoặc x=-1

Bạn tự kết luận nhé..

14 tháng 2 2016

3 năm nữa anh hotdog2002 nhé

21 tháng 7 2017

a đề sai hay sao mà vô nghiệm ?

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VP^2=\left(\sqrt{2x+1}+\sqrt{17-2x}\right)^2\)

\(\le\left(1+1\right)\left(2x+1+17-2x\right)=36\)

\(\Rightarrow VP^2\le36\Rightarrow VP\le6\)

Lại có: \(VT=x^4-8x^3+17x^2-8x+22\)

\(=\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6\ge6\)

Thấy: \(VT\le VP=6\)\(\Rightarrow VT=VP=6\)

\(\Rightarrow\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6=6\)

Suy ra x=4

ko hiểu chỗ nào ib nhé

1 tháng 4 2019

lời giải của bạn trên có 1 xíu sai nhé

Là BĐT Bu-nhi-a Cốp-xki chứ ạ ?

1 tháng 2 2018

Đặt : x+3 = a

=> x+5 = a+2

pt <=> a^4+(a+2)^4 = 16

<=> a^4+a^4+8a^3+24a^2+32a+16 = 16

<=> 2a^4+8a^3+24a^2+32a = 0

<=> a^4+4a^3+12a^2+16a = 0

<=> a.(a^3+4a^2+12a+16) = 0

<=> a.[(a^3+2a^2)+(2a^4+4a)+(8a+16)] = 0

<=> a.(a+2).(a^2+2a+8) = 0

<=> a.(a+2) = 0 ( vì a^2+2a+8 > 0 )

<=> a=0 hoặc a+2=0 

<=> a=0 hoặc a=-2

<=> x+3=0 hoặc x+3=-2

<=> x=-3 hoặc x=-5

Vậy ..............

Tk mk nha

1 tháng 2 2018

Ta có: \(\left(x+3\right)^4+\left(x+5\right)^4=16\left(1\right)\)

Đặt x + 4 = y thì phương trình (1) trở thành:

   \(\left(y-1\right)^4+\left(y+1\right)^4=16\)

\(\Leftrightarrow y^4-4y^3+6y^2-4y+1+y^4+4y^3+6y^2+4y+1=16\)

\(\Leftrightarrow2y^4+12y^2+2=16\)

\(\Leftrightarrow2\left(y^4+6y^2+1\right)=16\)

\(\Leftrightarrow y^4+6y^2+1=8\)

\(\Leftrightarrow y^4+6y^2+1-8=0\)

\(\Leftrightarrow y^4+7y^2-y^2-7=0\)

\(\Leftrightarrow y^2\left(y^2-1\right)-7\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(y^2-7\right)\left(y^2-1\right)=0\)

Vì \(y^2-7\ne0\)

\(\Rightarrow y^2-1=0\Rightarrow y^2=1\Rightarrow y=\pm1\)

Với y = 1 => x + 4 = y => x + 4 = 1 => x = -3

Với y = -1 => x + 4 = y => x + 4 = -1 => x = -5

Vậy x = {-3;-5}

1 tháng 7 2017

Ta có : 17 - 14(x + 1) = 13 - 4(x + 1) - 5(x - 3)

<=> 17 - 14x - 14 = 13 - 4x - 4 - 5x + 15

<=> -14x + 3 = -9x + 24

<=> -14x + 9x = 24 - 3

<=> -5x = 21

=> x = -4,2

1 tháng 7 2017

Ta có :  5x + 3,5 + (3x - 4) = 7x - 3(x - 0,5)

<=>  5x + 3,5 + 3x - 4 = 7x - 3x + 1,5 

<=> 8x - 0,5 = 4x + 1,5

=> 8x - 4x = 1,5 + 0,5

=> 4x = 2

=> x = \(\frac{1}{2}\)