Viết gọn biểu thức: 57 * 42 *( 2/5)5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=x^2-3x-10-x^2+3x=-10\\ b,=\left(x+1\right)\left(x+1-x+1\right)=2\left(x+1\right)=2x+2\)
Lời giải:
$(a-b+5)(a+b-5)=[a-(b-5)][a+(b-5)]=a^2-(b-5)^2$
\(\left(a-b+5\right)\left(a+b-5\right)=a^2-\left(b-5\right)^2\)
bài 1 : a +b , rút gọn và tính
(-a+b-c)-(a-b-c)= -a+b -c-a+b+c= -2a+2b= -2.1+2.-1=-2+-2 = -4
\(A=\frac{1}{2-\sqrt{3}}+\frac{1}{2+\sqrt{5}}\)
\(A=\frac{2+\sqrt{5}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{5}\right)}+\frac{2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{5}\right)}\)
\(A=\frac{2+\sqrt{5}+2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{5}\right)}\)
\(A=\frac{4+\sqrt{5}-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{5}\right)}\)
\(A=\sqrt{5}+\sqrt{3}\)
\(A=\frac{1}{2-\sqrt{3}}+\frac{1}{2+\sqrt{5}}=\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{\sqrt{5}-2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)
\(=\frac{2+\sqrt{3}}{2^2-\sqrt{3}^2}+\frac{\sqrt{5}-2}{\sqrt{5}^2-2^2}=2+\sqrt{3}+\sqrt{5}-2\)
\(=\sqrt{3}+\sqrt{5}\)
\(a,=\left(a+5+\dfrac{1}{2}-a\right)^2=\left(\dfrac{11}{2}\right)^2=\dfrac{121}{4}\\ b,=\dfrac{\left(x+y\right)^2-16}{3x\left(x-4+y\right)}=\dfrac{\left(x+y-4\right)\left(x+y+4\right)}{3x\left(x+y-4\right)}=\dfrac{x+y+4}{3x}\)
a, \(\left(a+5\right)^2+2\left(a+5\right)\left(\dfrac{1}{2}-a\right)+\left(\dfrac{1}{2}-a\right)^2=\left(a+5+\dfrac{1}{2}-a\right)^2=\left(\dfrac{11}{2}\right)^2=\dfrac{121}{4}\)
b,\(\dfrac{x^2-16+2xy+y^2}{3x^2-12x+3xy}=\dfrac{\left(x^2+2xy+y^2\right)-4^2}{3x\left(x-4+y\right)}=\dfrac{\left(x+y-4\right)\left(x+y+4\right)}{3x\left(x+y-4\right)}=\dfrac{x+y+4}{3x}\)
Ta có:
\(P=\frac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(P=\frac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(P=\frac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(P=\frac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{2}\)
\(P=\frac{5^{32}-1}{2}\)
\(A=\frac{5^7.4^2.2^5}{5^5}=5^2.4^2.2^5=2^9.5^2\)