Tìm số tự nhiên a nhỏ nhất, biết rằng khi chia cho 17 thì được số dư là 8, còn khi chia a cho 25 thì được số dư là 16.
Lưu ý: Nhớ trình bày cách làm đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Lê Thị Thanh Quỳnh - Toán lớp 6 - Học toán với OnlineMath
Gọi số cần tìm là a ( a ∈ N* ; 99 < a < 1000 )
Theo bài ra , ta có :
\(\hept{\begin{cases}a-8⋮17\\a-16⋮25\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-8\right)+17⋮17\\\left(a-16\right)+25⋮25\end{cases}}\Rightarrow\hept{\begin{cases}a+9⋮17\\a+9⋮25\end{cases}}\)
\(\Rightarrow a-9∈BC\left(17,25\right)\)
Vì 17 và 25 nguyên tố cùng nhau
=> BCNN( 17 . 25 ) = 17 . 25 = 425
=> BC( 17 , 25 ) = { 0 ; 425 ; 850 ; 1275 ; ... }
=> a + 9 ∈ { 0 ; 425 ; 850 ; 1275 ; ... }
=> a ∈ { 416 ; 841 ; 1266 ; ... } ( do a ∈ N* )
Mà 99 < a < 1000
=> a ∈ { 416 ; 841 }
1/
Gọi số cần tìm là a
Ta có :
a : 17 dư 8
=> a - 8 chia hết cho 17
=> a + 17 - 8 chia hết cho 17
=> a + 9 chia hết cho 17
a : 25 dư 16
=> a - 16 chia hết cho 25
=> a + 25 - 16 chia hết cho 25
=> a + 9 chia hết cho 25
=> a + 9 thuộc BC ( 17 ; 25 )
Ta có :
17 = 17
25 = 52
=> BCNN ( 17 ; 25 ) = 17 . 52 = 425
=> BC ( 17 ; 25 ) = B ( 425 ) =
=> a + 9 = B ( 425 ) = { 0 ; 425 ; 950 ; 1375 ; .... }
=> a = { -9 ; 416 ; 941 ; 1366 ; .... }
Mà a là số tự nhiên nhỏ nhất
=> a = 416
Vậy số cần tìm là 416
2, Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath
Gọi số tự nhiên có ba chữ số cần tìm là \(n\)
Ta có:
\(n:17\left(R=8\right)\Rightarrow\left(n+9\right)⋮17\)
\(n:25\left(R=16\right)\Rightarrow\left(n+9\right)⋮25\)
\(\Rightarrow\left(n+9\right)⋮\left(17;25\right)\Leftrightarrow\left(n+9\right)=BCNN\left(17,25\right)\Leftrightarrow\left(n+9\right)=425\)
\(\Rightarrow n+9=425\)
\(\Rightarrow n=416\)
Gọi số tự nhiên cần tìm đó là x ; \(x\in N\)
Ta có : \(x-8⋮17\); \(x-16⋮25\)và \(100< x< 1000\)
\(\Rightarrow x+9⋮17\)và \(x+9⋮25\) \(\Rightarrow x+9\in BC\left(17,25\right)\)và \(100< x< 1000\)
\(BCNN\left(17,25\right)=425\)và \(BC\left(17,25\right)=\left\{0;425;850;....\right\}\)
Với \(x+9=425\Rightarrow x=425-9=416\)
Với \(x+9=850\Rightarrow x=850-9=841\)
\(\Rightarrow\)số tự nhiên có 3 chữ số cần tìm là 416 và 841
Lời giải:
Do $a$ chia $25$ dư $16$ nên $a=25k+16$ với $k$ nguyên.
$a-8\vdots 17$
$\Rightarrow 25k+8\vdots 17$
$\Rightarrow 25k+25\vdots 17$
$\Rightarrow 25(k+1)\vdots 17$
$\Rightarrow k+1\vdots 17\Rightarrow k=17m-1$ với $m$ nguyên.
Vậy $a=25k+16=25(17m-1)+16=425m-9$
Do $a$ có 3 chữ số nên $100\leq 425m-9\leq 999$
$\Rightarrow 0< m<3$
$\Rightarrow m=1, 2$
$\Rightarrow a=416$ hoặc $a=841$
Ta có:a:17 dư 8=>a+9 chia hết cho 17
a;25 dư 16=>a+9 chia hết cho 25
=>a+9 thuộc BC(17,25)
17=17
25=52
=>BCNN(17,25)=52.17=425
=>a+9 thuộc B(425)=0;425;....
=>a thuộc -9;416;....
Mà a là số tự nhiên nhỏ nhất có 3 chữ số nên a=416
Gọi số cần tìm là x , đăt A = x - 5
Ta có : x : 29 dư 5 => A chia hết 29
x : 31 dư 28 => A chia cho 31 dư 23 => A = 31 k + 23
cho k = 0,1,2,3 ....... ta thấy khi k = 3 thì A = 116 chia hết cho 29. Vậy x = A + 5 = 116 + 5 = 121
chia a cho 17 thì dư 8 =>a+9 chia hết cho 17
chia a cho 25 thì dư 16 =>a+9 chia hết cho 25
=>a+9 chia hết cho 17 và 25
=>a+9 thuộc BC(17;25)
17=17
25=52
=>BCNN(17;25)=17.52=425
=>a+9 thuộc B(425)={0;425;..}
=>a thuộc {-9;416;....}
vì a là số tự nhiên nhỏ nhất có 3 chữ số nên a = 416
chia a cho 17 thì dư 8 thì suy ra a+9 chia hết cho 17
chia a cho 25 thì dư 16 suy ra a+9 chia hết cho 25
suy raa+9 chia hết cho 17 và 25
suy raa+9 thuộc BC(17;25)
17 = 17 vì 17 là số nguyên tố
25 = 52
suy ra BCNN(17;25)=17.52=425
suy ra a+9 thuộc B(425)={0;425;..}
suy ra a thuộc {-9;416;....}
vì a là số tự nhiên nhỏ nhất có 3 chữ số nên a = 416
vậy a = 416
**** cho mình nhé