rút gọn biểu thức (x^2 - 1) / (x + 1) có lời giải nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2-6x-5x+5x^2-8x^2+24\)
\(=\left(3x^2+5x^2-8x^2\right)-\left(6x+5x\right)+24\)
\(=-11x+24\)
a) 3(x-1)-2|x+3| = 3x-3-2(x+3) = 3x-3-2x+6 = (3x-2x)+(6-3)=x+3
b) 2|x-3|-|4x-1| = 2(x-3)-(4x-1) = 2x-6-4x+1 = (2x-4x)-(6-1) = -2x-5
`\sqrt{[27(x-1)^2]/12} +3/2 - (x - 2)\sqrt{[50x^2]/[8(x-2)^2]}` `(1 < x < 2)`
`=\sqrt{[3(x-1)]^2 .3}/\sqrt{2^2 .3} + 3/2 - (x - 2) \sqrt{(5x)^2 . 2}/\sqrt{[2(x - 2)]^2 . 2}`
`=[3\sqrt{3}|x-1|]/[2\sqrt{3}]+3/2-(x-2)[5\sqrt{2}|x|]/[2\sqrt{2}|x-2|]`
`=[3(x-1)]/2+3/2-[5x(x-2)]/[2(2-x)]` (Vì `1 < x < 2`)
`=3/2x - 3/2 + 3/2 + 5/2x`
`=4x`
\(a,ĐK:x\ne\pm1;x\ne0\\ M=\dfrac{1-x+2x}{\left(1+x\right)\left(1-x\right)}:\dfrac{1-x}{x}\\ M=\dfrac{x+1}{\left(x+1\right)\left(1-x\right)}\cdot\dfrac{x}{1-x}=\dfrac{x}{\left(1-x\right)^2}\\ b,ĐK:x\ge0;x\ne4\\ N=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ N=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
Tất cả đều phải tìm điều kiện