Chứng tỏ rằng 2.MC=AC-BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, vì M nằm ở trong tam giác ABC nên MC và MB nằm ở trong tam giác ABC
=) MC va MB lần lượt chia góc C và B làm 2 nửa
=) ^B = ^B1+ ^B2 ^C= ^C1+^C2
theo quan hệ giứa góc và cạnh đối diên có
ab tương ứng vs góc C, ac tương ứng vs góc B
MB .........................C1, MC B2
CÓ : ^B+^C > ^B2+^C2
=) AB+AC > MB+MC ( THEO QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN)
CON B THÌ CHỊU NHÉ
A B C M
a) Làm như bạn ly
b)Từ câu a) suy ra MB + MC < AB + AC;MA+MB < AC + BC
MA + MC < AB + BC
Cộng theo vế suy ra: \(2\left(MA+MB+MC\right)< 2\left(AB+BC+CA\right)\)
Suy ra \(MA+MB+MC< AB+BC+CA\) (1)
Mặt khác,áp dụng BĐT tam giácL
MB + MC > BC.Tương tự với hai BĐT còn lại và cộng theo vế: \(2\left(MA+MB+MC\right)>AB+BC+CA\)
Chia hai vế cho 2: \(MA+MB+MC>\frac{AB+BC+CA}{2}\)
a,
Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (Py - ta - go)
=> \(10^2=AB^2+6^2\)
=> AB = 8 (cm)
b,
Xét Δ MAC và Δ MBD, có :
MD = MC (gt)
MA = MB (M là trung tuyến của AB)
\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)
=> Δ MAC = Δ MBD (c.g.c)
c,
Ta có : AM = 2AB
=> AM = 4 (cm)
Xét Δ AMC vuông tại A, có :
\(CM^2=AM^2+AC^2\) (Py - ta - go)
=> \(CM^2=4^2+6^2\)
=> CM ≈ 7,2 (cm)
Ta có :
AC + BC = 6 + 10 = 16 (cm)
2CM ≈ 7,2 x 2 ≈ 14,4 (cm)
=> AC + BC > 2CM
Mấy cái dạng này á bạn cứ kiếm cách tính của mấy cái đoạn đề bài cho rồi thế vào. rồi tính như số học á. Nếu hợp lý là chứng minh đc. Chủ yếu tự tìm mò.
a: AB=căn 10^2-6^2=8cm
=>BM=4cm
b: Xét ΔMAC và ΔMBD có
MA=MB
góc AMC=góc BMD
MC=MD
=>ΔMAC=ΔMBD
c: AC+BC=BD+BC>CD=2CM
chịch tí đi nhỉ