Cho tam giác ABC cân tại Acó các trung tuyến BM, CN
a)c/m AM=AN
b)c/m BNMC là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn bên phải, bấm vô thống kê hỏi đáp ạ, VÀO TRANG CÁ NHÂN CỦA E Em bức xúc lắm anh chị ạ, xl mấy anh chị vì đã gây rối Thiệt tình là ko chấp nhận nổi con nít ms 2k6 mà đã là vk là ck r ạ, bày đặt yêu xa, chưa lên đại học Đây là \'tội nhân\' https://olm.vn/thanhvien/nhu140826 và https://olm.vn/thanhvien/trungkienhy79
I don't now
or no I don't
..................
sorry
a) BM,CN là trung tuyến=> M trung điểm AC, N trung điểm AB
=> MN là đường trung bình tam giác ABC=> MN//BC=> BNMC là hình thang.
b) MN là đường trung bình tam giác ABC => MN=1/2.BC
c) Vì tam giác ABC cân tại A nên AH cũng là trung tuyến=> H trung điểm BC=> BC=2BH
Định lí PYTAGO cho tam giác AHB vuông tại H
\(\Rightarrow AB^2=AH^2+HB^2\Rightarrow BH=\sqrt{AB^2-AH^2}=4cm\)
\(\Rightarrow BC=2BH=8cm\)
\(\Rightarrow MN=\frac{1}{2}BC=4cm\)
M trung điểm AC, N trung điểm AB \(\Rightarrow NB=MC=\frac{1}{2}AB=2,5cm\)
=> Chu vi BNMC=MN+NB+BC+CM=4+2,5+8+2,5=17cm
CORONA mà đi học à bạn ?!
a) Ta có: AM+MB=AB(M nằm giữa hai điểm A và B)
AN+NC=AC(N nằm giữa A và C)
mà MB=NC(gt)
và AB=AC(ΔABC cân tại A)
nên AM=AN
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAMN cân tại A(cmt)
nên \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
b) Ta có: \(\widehat{AMN}=\widehat{ABC}\)(cmt)
mà hai góc này là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Xét tứ giác MNBC có MN//BC(cmt)
nên MNBC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)
Hình thang MNBC(MN//BC) có \(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
nên MNBC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
c) Xét ΔAMN có
E là trung điểm của AM(gt)
F là trung điểm của AN(gt)
Do đó: EF là đường trung bình của ΔAMN(Định nghĩa đường trung bình của hình thang)
Suy ra: EF//MN và \(EF=\dfrac{MN}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà MN//BC(cmt)
nên EF//BC(3)
Xét hình thang MNCB(MN//CB) có
H là trung điểm của MB(gt)
G là trung điểm của NC(gt)
Do đó: HG là đường trung bình của hình thang MNCB(Định nghĩa đường trung bình của hình thang)
Suy ra: HG//MN//BC và \(HG=\dfrac{MN+BC}{2}\)(Định lí 4 về đường trung bình của hình thang)(4)
Từ (3) và (4) suy ra EF//HG
Ta có: HG//BC(cmt)
nên \(\widehat{EHG}=\widehat{ABC}\) và \(\widehat{FGH}=\widehat{ACB}\)(Các cặp góc đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{EHG}=\widehat{FGH}\)
Xét tứ giác EFGH có EF//HG(cmt)
nên EFGH là hình thang có hai đáy là EF và HG(Định nghĩa hình thang)
Hình thang EFGH(EF//HG) có \(\widehat{EHG}=\widehat{FGH}\)(cmt)
nên EFGH là hình thang cân(Dấu hiệu nhận biết hình thang cân)
a) Ta có \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)
Do BD là phân giác \(\widehat{ABC}\)\(\Rightarrow\widehat{ABD}=\widehat{DBC}\)
CE là phân giác \(\widehat{ACB}\)\(\Rightarrow\widehat{ACE}=\widehat{ECB}\)
Mà \(\Delta ABC\)cân \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Suy ra \(\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\)
Xét \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)( tự xét nha :)))
\(\Rightarrow AD=AE\)\(\Rightarrow\Delta AED\)cân tại A
\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{AED}=\widehat{ABC}\)
Mà hai góc đó ở vị trí đồng vị
\(\Rightarrow ED//BC\)
Lại có : \(\widehat{ABC}=\widehat{ACB}\)
Suy ra : BEDC là hình thang cân (3)
Ta có : \(ED//BC\Rightarrow\widehat{EDB}=\widehat{DBC}\)( so le trong )
Mà \(\widehat{EBD}=\widehat{DBC}\)
Suy ra \(\widehat{EDB}=\widehat{EBD}\)\(\Rightarrow\Delta BED\)cân tại E
\(\Rightarrow EB=ED\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\)BEDC là hình thang cân có cạnh bên bằng đáy nhỏ -_-
b) Xét \(\Delta ABH=\Delta ACK\left(ch-gn\right)\)( tự xét )
\(\Rightarrow AK=AH\)\(\Rightarrow\Delta AKH\)cân tại A
\(\Rightarrow\widehat{AKH}=\frac{180^o-\widehat{BAC}}{2}\left(5\right)\)
Từ (1) và (5) \(\Rightarrow\widehat{AKH}=\widehat{ABC}\)
Mà hai góc trên ở vị trí đồng vị
Suy ra : KH // BC
Lại có : \(\widehat{ABC}=\widehat{ACB}\)
Suy ra : BKHC là hình thang cân
c) Do BM là trung tuyến \(\Rightarrow AM=\frac{1}{2}AC\)
CN là trung tuyến \(\Rightarrow AN=\frac{1}{2}AB\)
Mà AB = AC \(\Rightarrow AN=AM\)
\(\Rightarrow\Delta AMN\)cân tại A \(\Rightarrow\widehat{ANM}=\frac{180^o-\widehat{BAC}}{2}\left(6\right)\)
Từ (1) và (6) \(\Rightarrow\widehat{ANM}=\widehat{ABC}\)
Mà hai góc trên ở vị trí đồng vị
\(\Rightarrow MN//BC\)
Lại có : \(\widehat{ABC}=\widehat{ACB}\)
Suy ra BNMC là hình thang cân
Vậy ...
Câu a.
BM là trung tuyến qua điểm B và trung điểm cạnh AC tại M, AM =MC=AB:2 (tam giác cân tại A)
CN là trung tuyến qua điểm C và trung điểm cạnh AB tại N, AN =NB = AB:2
vậy AM=AN
Câu b
theo câu a cạnh MN song song BC, là đường trung bình của cạnh BC, tam giác ABC. BN=CM
BNMC là hình thang cân.