Cho tam giác ABC đều biết AB = 16 cm đường cao BD, CE cắt nhau tại H tính AH. Giúp v
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{HCB}=\widehat{HBC}\)
hay ΔHBC cân tại H
=>HB=HC
mà AB=AC
nên AH là đường trung trực của BC
=>A,H,M thẳng hàng
b: BC=16cm nên BM=CM=8cm
=>AM=6cm
a. Nối AM
Xét \(2\Delta:\Delta AMB\) và \(\Delta AMC\) có:
\(\left\{{}\begin{matrix}AM.chung\\AB=AC\left(gt\right)\\BM=BC\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Mà: \(\widehat{BMC}=180^o\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM.là.đường.cao\)
Mà H là giao của BD và CE
Vậy H là trực tâm của tam giác ABC
Vậy AH đi qua M
b. \(MC=16:2=8\left(cm\right)\)
Áp dụng định lý Pi - ta - go, suy ra:
\(AM^2+MC^2=AC^2\)
\(\Leftrightarrow AH=\sqrt{AC^2-MC^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)
Mình ghét hình...với lại nó dài nữa! Ai làm cũng mỏi tay bạn à...
a)BD, CE vuông góc với AC,AB
=> H là trực tâm của tam giác ABC
=>AH là đường cao của tam giác ABC
=>AH vuông góc BC
b)ta có:góc EAC=gócDAB
góc ADB=góc AEC=90độ
=>tam giác ABD đồng dạng với tam giác ACE
b) Xét tam giác ABC có:
BD là đường cao của ABC (gt)
CE là đường cao của ABC (gt)
mà BD cắt CE tại H (gt)
=>AH là đường cao thứ 3
=>AH vuông góc BC
c) Ta có: Tam giác ABC cân tại A (gt)
=> góc ABC = góc ACB = 70o
Xét tam giác ABC CÓ
ABC + ACB + BAC =180 (tổng 3 góc trong tam giác)
70 + 70 + BAC = 180
BAC = 180 - 140 = 40o
Ta có: Tam giác ABC cân tại A, đường cao AH (gt)
=>AH là đường phân giác của BAC
=>BAH = CAH = BAC : 2 =40 : 2= 200
Xét tam giác EAH và tam giác DAH có;
EAH = DAH =200
AH chung
=>EAH = DAH(ch_gn)
=> AHE = AHD=90-20=60o( 2 góc tương ứng)
Ta có: EHD = AHE + AHD = 60 + 60 =1200
=> BHC = EHD =1200 ( 2 góc đối đỉnh)
Xét tam giác ABC đều , đường cao AH
=> AH đồng thời là đường trung tuyế
=> HB = BC/2 = 8 cm
Theo định lí Pytago tam giác AHB vuông tại H
\(AH=\sqrt{AB^2-BH^2}=8\sqrt{3}\)cm
.