K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

2\(\frac{2}{x-1}-\frac{7-x}{3x-3}=\frac{2}{x-1}-\frac{7-x}{3\left(x-1\right)}=\frac{6}{3\left(x-1\right)}-\frac{7-x}{3\left(x-1\right)}=\frac{13-x}{3\left(x-1\right)}\)

2 tháng 8 2023

a) \(\dfrac{3}{4xy}+\dfrac{5x}{2x^2z}+\dfrac{7}{6yz^2}\) (MSC: \(12x^2yz^2\))

\(=\dfrac{3\cdot3xz^2}{4xy\cdot3xz^2}+\dfrac{5x\cdot6yz}{2x^2z\cdot6yz}+\dfrac{7\cdot2x^2}{6yz^2\cdot2x^2}\)

\(=\dfrac{9xz^2}{12x^2yz^2}+\dfrac{30xyz}{12x^2yz^2}+\dfrac{14x^2}{12x^2yz^2}\)

\(=\dfrac{9xz^2+30xyz+14x^2}{12x^2yz^2}\)

\(=\dfrac{x\left(9z^2+30yz+14x\right)}{12x^2yz^2}\)

\(=\dfrac{9z^2+30yz+14x}{12x^2yz^2}\)

b) \(\dfrac{x^2}{x^2+3x}+\dfrac{3}{x+3}+\dfrac{3}{x}\)

\(=\dfrac{x^2}{x\left(x+3\right)}+\dfrac{3}{x+3}+\dfrac{3}{x}\)

\(=\dfrac{x}{x+3}+\dfrac{3}{x+3}+\dfrac{3}{x}\)

\(=\dfrac{x+3}{x+3}+\dfrac{3}{x}\)

\(=1+\dfrac{3}{x}\)

\(=\dfrac{x}{x}+\dfrac{3}{x}\)

\(=\dfrac{x+3}{x}\)

a: \(=\dfrac{3\cdot3\cdot xz^2+5x\cdot6\cdot y+7\cdot x^2\cdot2}{12x^2yz^2}=\dfrac{9xz^2+30xy+14x^2}{12x^2yz^2}\)

\(=\dfrac{9z^2+30y+14x}{12xyz^2}\)

b: \(=\dfrac{x}{x+3}+\dfrac{3}{x+3}+\dfrac{3}{x}=1+\dfrac{3}{x}=\dfrac{x+3}{x}\)

18 tháng 12 2016

cái này có mẫu thức chung là 3(x-1) rồi bạn quy đồng lên là được thôi

18 tháng 12 2016

Đặt hiệu của phép tính là A:

 

1 tháng 12 2016

\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right)\times\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)

\(=\left[\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right]\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{\left(x^2-x+1\right)-3+3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2-x+1-3+3x+3}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{3\left(x+1\right)^2}{\left(x+1\right)\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{3x}{x\left(x+2\right)}-\frac{2x-2}{x\left(x+2\right)}\)

\(=\frac{3x-2x+2}{x\left(x+2\right)}\)

\(=\frac{x+2}{x\left(x+2\right)}\)

\(=\frac{1}{x}\)

3 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

\(\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)

\(=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)

\(=\frac{\left(9+x^2-3x\right)\left(x+3\right)3x}{x\left(x-3\right)\left(x+3\right)\left(3x-9-x^2\right)}\)

\(=\frac{-3}{x-3}\)

14 tháng 8 2020

Xin phép sửa đề:

Ta có: \(\frac{3x+1}{\left(x-1\right)^2}-\frac{1}{x+1}=\frac{x+3}{1-x^2}\) \(\left(x\ne\pm1\right)\)

\(\Leftrightarrow\frac{\left(3x+1\right)\left(x+1\right)-\left(1-x\right)^2}{\left(1-x\right)^2\left(x+1\right)}=\frac{\left(x+3\right)\left(1-x\right)}{\left(1-x\right)^2\left(x+1\right)}\)

\(\Rightarrow3x^2+4x+1-1+2x-x^2=-x^2-2x+3\)

\(\Leftrightarrow3x^2+8x-3=0\)

\(\Leftrightarrow\left(3x^2+9x\right)-\left(x+3\right)=0\)

\(\Leftrightarrow3x\left(x+3\right)-\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\3x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{3}\end{cases}}\)

Vậy tập nghiệm PT \(S=\left(-3;\frac{1}{3}\right)\)

20 tháng 12 2016

a. \(=\frac{x+1}{2.\left(x+3\right)}+\frac{2x+3}{x.\left(x+3\right)}=\frac{x^2+x+4x+6}{2x.\left(x+3\right)}=\frac{x^2+5x+6}{2x.\left(x+3\right)}=\frac{\left(x+2\right).\left(x+3\right)}{2x.\left(x+3\right)}=\frac{x+2}{2x}\)

b. =\(\frac{2.\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x.\left(x+3\right)}=\frac{-2}{x^2}\)

Chắc chắn đúng, mik nhaaaaaa

a) \(\frac{3x}{2x+4}+\frac{x+3}{x^2-4}\)

\(=\frac{3x}{2\left(x+2\right)}+\frac{x+3}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x\left(x-2\right)+2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}\)

\(=\frac{3x^2-6x+2x+6}{2\left(x^2-4\right)}\)

\(=\frac{3x^2-4x+6}{2\left(x^2-4\right)}\)