cho a+ b+ c=1. tìm GTNN cua biểu thức
P= a³+b³+c³+a²*(b+c)+b²*(a+c)+c²*(a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}\) (BĐT Cauchy Schwarz)
\(=\dfrac{9}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}+\dfrac{7}{ab+bc+ca}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2ac+2bc}+\dfrac{7}{ab+bc+ca}\)
\(=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}\)
Ta có: \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\) .Thế vào biểu thức
\(\Rightarrow P\ge9+\dfrac{7}{\dfrac{1}{3}}=9+21=30\)
\(\Rightarrow P_{min}=30\) khi \(a=b=c=\dfrac{1}{3}\)
\(P\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2\)
\(P\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{8}{\left(a+b\right)^2}=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2\left(a+b\right)^2}+\dfrac{15}{2\left(a+b\right)^2}\)
\(P\ge\dfrac{1}{2}.2\sqrt{\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}}+\dfrac{15}{2.1^2}=\dfrac{17}{2}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
\(\left(a+b+c\right)\ge3\sqrt[3]{abc}\)
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
Min=9
dấu = xảy ra khi a=b=c=1
`a^2+b^2+c^2=ab+ab+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`<=>a=b=c`
`<=>3a^2=12`
`<=>a^2=4`
`<=>a=b=c=2` hoặc `a=b=c=-2`
`=>P=2^3+2^3+2^3=24` hoặc `P=(-2)^3+(-2)^3+(-2)^3=-24`
Ta có:
\(S=\dfrac{a^2}{a\left(\sqrt{b}+\sqrt{c}\right)}+\dfrac{b^2}{b\left(\sqrt{c}+\sqrt{a}\right)}+\dfrac{c^2}{c\left(\sqrt{a}+\sqrt{b}\right)}\ge\dfrac{\left(a+b+c\right)^2}{a\left(\sqrt{b}+\sqrt{c}\right)+b\left(\sqrt{c}+\sqrt{a}\right)+c\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(b+c\right)+\sqrt{b}\left(c+a\right)+\sqrt{c}\left(a+b\right)}\)
Mặt khác:
\(\sqrt{a}\left(b+c\right)=\dfrac{1}{\sqrt{2}}\sqrt{2a.\left(b+c\right)\left(b+c\right)}\le\dfrac{1}{\sqrt{2}}\sqrt{\left(\dfrac{2a+2b+2c}{3}\right)^3}=\dfrac{2\sqrt{3}}{9}\)
\(\Rightarrow S\ge\dfrac{1}{3.\dfrac{2\sqrt{3}}{9}}=\dfrac{\sqrt{3}}{2}\)
\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
\(\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Dễ có:\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\le\left(\frac{3+a+b+c}{3}\right)^3\le8\)
Khi đó \(B\ge\frac{3}{2}\)
Đẳng thức xảy ra tại a=b=c=1
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)
\(\Rightarrow3.P\ge9\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(P=a^3+b^3+c^3+a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)\)
\(=a^3+b^3+c^3+a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\)
\(=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
Đạt được khi \(a=b=c=\frac{1}{3}\)