Cho \(\Delta ABC\)đều có AH là đường cao của tam giác ABC, HD là tia phân giác của góc AHC, D thuộc AC. Khi đó HDC bằng bao nhiêu độ?
Mấy cậu giúp tớ với nha, tớ sẽ tick cho ạ, cảm ơn mấy cậu nhiều =)))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì HD là tia phân giác của ^AHC
=>^AHD=^DHC=90/2=45
Xét ΔHDC có: ^DHC+^HCD+^CDH=180(định lý tổng 3 góc của 1 tam giác)
=>^CDH=180-^HCD-^DHC=180-30-45=105
Có: ^ADH+^CDH=180 (dặp góc kề bù)
=>^ADH=180-^CDH=180-105=75
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AHchung
Do đo: ΔAHB=ΔAHC
b: HB=HC=BC/2=3cm
=>AH=4cm
c: Xét ΔABM và ΔACN có
góc ABM=góc ACN
AB=AC
góc BAM chung
Do đó: ΔABM=ΔACN
Suy ra BM=CN
Xét ΔNBC và ΔMCB có
NB=MC
NC=MB
BC chung
Do đo: ΔNBC=ΔMCB
Suy ra: góc KBC=góc KCB
=>ΔKBC cân tại K
=>KB=KC
=>KN=KM
hay ΔKNM cân tại K
d: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
Kéo dài BI cắt AK tại D. Ta chứng minh \(BD\perp AK\).
Từ I kẻ \(IM\perp AB;IN\perp BC\)
Ta có ngay \(\Delta BIM=\Delta BIN\) (Cạnh huyền góc nhọn)
\(\Rightarrow BM=BN\)
Kéo dài tia AK cắt BC tại P.
Ta có \(\Delta AIM=\Delta PIN\left(g-c-g\right)\Rightarrow AM=PN\)
Vậy thì ta có AB = AM + MB = PN + NB = BP.
Suy ra tam giác ABP cân tại B.
Xét tam giác cân ABP có BD là phân giác đồng thời đường cao. Vậy \(BD\perp AK\)
Ta thấy HJ và HK là phân giác hai góc kề bù nên chũng vuông góc.
Xét tứ giác JDKH có \(\widehat{JDK}+\widehat{JHK}=90^o+90^o=180^o\)
Vậy JDKH là tứ giác nội tiếp. Hay \(\widehat{JKH}=\widehat{JDH}\)
Xét tứ giác BHDA có \(\widehat{ADB}=\widehat{AHB}=90^o\) nên BHDA là tứ giác nội tiếp.
Suy ra \(\widehat{BDH}=\widehat{BAH}\)
Mà \(\widehat{BAH}=\widehat{BCA}\) (Cùng phụ với góc \(\widehat{ABC}\) )
Vậy nên \(\widehat{JKH}=\widehat{BCA}\)
Xét tam giác ABC và tam giác HJK có:
\(\widehat{BAC}=\widehat{JHK}=90^o\)
\(\widehat{BCA}=\widehat{JKH}\)
\(\Rightarrow\Delta ABC\sim\Delta HJK\left(g-g\right)\)
Cô giải đúng rùi nhưng em chưa học tứ giác nội tiếp đường tròn
Nhưng dù sao cũng cảm ơn cô
là 75 độ