Chứng minh rằng:
a, \(A=n^4-2n^3+3n^2-2n\) Là số chính phương
b, \(B=23^5+23^{12}+23^{2003}\)Không là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đầu tiên chứng minh là mày không bị thiểu năng bằng cách xóa câu hỏi này đi nhé
ta có 235+2312+232003= số o chính phương
tớ o biết làm tick nha
nếu \(A⋮b\) mà \(A⋮̸b^2\)\((A\) là số nguyên tố\()\)
\(\Rightarrow A\) không là số chính phương
tương tự vì A \(⋮5\) mà \(A⋮̸25\)
vây A ko phải là số chính phương
đề sai à n4-2n3+3n2-2n lm sao là SCP dc
a) A=(n^2-n+1)^2-1=> A không thể chính phuong
=> đề có thể là: \(A=n^4-2n^3+3n^2-2n+1\) Hoặc chứng minh A không phải số phương
b)
23^5 tận cùng 3
23^12 tận cùng 1
23^2003 tận cùng 7
=>B Tận cùng là 1 => B là số lẻ
23^5 chia 8 dư 7
23^12 chia 8 dư 1
23^2003 chia 8 dư 7
(7+1+7=15)
=> B chia 8 dư 7
Theo T/c số một số cp một số chính phương lẻ chỉ có dạng 8k+1=> B không phải số Cp