K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a.
Xét tam giác AHM và tam giác DCM có:
AM = DM (gt)
AMH = DMC (2 góc đối đỉnh)
MH = MC (M là trung điểm của HC)
=> Tam giác AHM = Tam giác DCM (c.g.c)
b.
AHM = DCM (tam giác AHM = tam giác DCM)
mà AHM = 90độ
=> DCM = 90độ
Tam giác ABC vuông tại A có:
ABC + ACB = 90độ
60độ  + ACB = 90độ
ACB = 90  - 60
ACB = 30độ
ACD = ACB + DCM = 30  + 90  = 120độ

22 tháng 2 2019

a) C/M tam giác AHM= tam giác DCM

Xét tam giác AHM và tam giác DCM, ta có:

MA=MD (gt)
góc AMH= góc DMC (đđ)

MH=MC (gt)

Vậy tam giác AHM= tam giác DCM (c-g-c)

b) Tính góc ACD

Ta có tam giác ABC vuông tại A có góc B=600 nên góc ACB=300

Lại có góc MCD= góc AHM = 900 (hai tam giác bằng nhau)

Vậy góc ACD= 300 + 900 = 1200

c) C/M AK=CD

Trong tam giác AHK, ta có AN đường cao đồng thời là trung tuyến ( AN vuông góc HK và NH=NK)

Nên tam giác AHK cân tại A

Suy ra AK=AH

Mà AH=CD (hai tam giác bằng nhau)

Vậy AK=CD

d) C/M K, H, D thẳng hàng

Ta có tam giác AHC= tam giác DCH ( c-g-c)

Nên góc ACH= góc DHC

Mà hai góc này ở vị trí so le trong

Suy ra AC//HD

Lại có HK//AC ( cùng vuông góc với AB)

Vậy K, H, D thẳng hàng

14 tháng 12 2021

a) Xét tứ giác ACDB có:

+ M là trung điểm của BC (gt).

+ M là trung điểm của AD (MD = MA).
=> Tứ giác ACDB là hinhg bình hành (dhnb).

Mà ^BAC = 90o (Tam giác ABC vuông tại A).

=> Tứ giác ACDB là hình chữ nhật (dhnb).

=> AB // CD và CD \(\perp\) AC (Tính chất hình bình hành).

b) Trên tia đối của HA lấy E sao cho HE = HA (gt).

=> H là trung điểm của AE.

Xét tam giác CAE có:

+ CH là đường cao (CH \(\perp\) AE).

+ CH là đường trung tuyến (H là trung điểm của AE).

=> Tam giác CAE cân tại C.

=> CE = CA (Tính chất tam giác cân).

c) Ta có: CE = CA (cmt).

Mà CA = DB (Tứ giác ACDB là hình chữ nhật).

=> CE = DB (= CA).

d) Xét tam giác ADE có:

+ M là trung điểm của AD (MD = MA).

+ H là trung điểm của AE (gt).

=> MH là đường trung bình.

=> MH // DE (Tính chất đường trung bình trong tam giác).

Mà MH \(\perp\) AE (do AH \(\perp\) BC).

=> DE \(\perp\) AE (đpcm).

9 tháng 7 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác AHM và tam giác DCM có:

AM = DM (gt)

AMH = DMC (2 góc đối đỉnh)

MH = MC (M là trung điểm của HC)

=> Tam giác AHM = Tam giác DCM (c.g.c)

b.

AHM = DCM (tam giác AHM = tam giác DCM)

mà AHM = 900

=> DCM = 900

Tam giác ABC vuông tại A có:

ABC + ACB = 900

600 + ACB = 900

ACB = 900 - 600

ACB = 300

ACD = ACB + DCM = 300 + 900 = 1200

Chúc bạn học tốtok

9 tháng 7 2016

A B C H M 1 2 N K

Xét AMH và DCM có

MH=MC( M là trung điểm của HC)

M1=M2( đối đỉnh)

DM=AM(gt)

=>AHM=DCM

b)AHM=DCM(câu a)

=> góc AHM=DCM=90

AM=CM→MAC cân

MAC=MCA=90-60=300

→ADC=30+90=120

C) KO THE, SAI DE

D)