tìm stn có 2 cs biết lấy sđ : hàng đv thì được thương là cs hàng đv và số dư là cs hàng chục
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là \(\overline{abc}\)
Vì b:c=2( dư 2)
\(\Rightarrow\)c >2
Với c=3
b=3.2+2=8
a=3.2+1=7
\(\Rightarrow\)\(\overline{abc}\)= 783
Với c\(\ge\)4
b=2c+2 \(\ge\)10 (loại)(vì b là chữ số)
Vậy số cần tìm là 783
Gọi số cần tìm là ab
Ta có:ab = 10a +b = 8b+7 =>10a=7b+7
Vì 10a có tận cùng là 0 nên 7b có tận cùng là 3,suy ra b=9 và a=7
Số cần tìm là 79
Còn 1 cách khác nữa: vì cs hàng đv <=9 nên giá trị số đó sẽ nhỏ hơn hoặc bằng 9x8+7=79
Cs hàng chục sẽ <=7
Vì số dư là 7 nên cs hàng đv sẽ lớn hơn bảy,chỉ có hai giá trị là 8 và 9. Thử ta được 79 thỏa mãn đề bài.
Gọi số cần tìm là abcd . Xóa chữ số hàng chục và hàng đơn vị , ta được số ab
Theo đề bài , ta có :
abcd - ab = 4455
100 x ab + cd - ab = 4455
cd + 100 x ab - ab = 4455
cd + 99 x ab = 4455
cd = 99 x ( 45 - ab )
Ta nhận xét tích của 99 với 1 số tự nhiên là 1 số tự nhiên nhỏ hơn 100 . Cho nên 45 - ab phải bằng 0 hoặc bằng 1
Nếu 45 - ab = 0 thì ab = 45 ; cd = 00
Nếu 45 - ab = 1 thì ab = 44 ; cd = 99
Vậy số cần tìm là 4500 hoặc 4499
gọi số đó là abcd (0<a\(\le9,0\le b,c,d\le9\))
theo bài ra ta có: \(\hept{\begin{cases}abcd=k^2\\\left(a+1\right)\left(b+3\right)\left(c+5\right)\left(d+3\right)=h^2\end{cases}}\left(k,h\varepsilonℕ;31< k,h\le99\right)\)
\(\Rightarrow\hept{\begin{cases}1000a+100b+10c+d=k^2\\1000\left(a+1\right)+100\left(b+3\right)+10\left(c+5\right)+\left(d+3\right)=h^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}1000a+100b+10c+d=k^2\\1000a+100b+10c+d+1353=h^2\end{cases}}\)
\(\Rightarrow h^2-k^2=1353\)
Ta thấy (h-k)>(h+k) \(\forall h,k\varepsilonℕ^∗\)
\(\Rightarrow\left(h-k\right)\left(h+k\right)=1\cdot1353=3\cdot451=11\cdot123=33\cdot41\)
Xét \(\hept{\begin{cases}h-k=1\\h+k=1353\end{cases}}\Leftrightarrow\hept{\begin{cases}h=677\\k=676\end{cases}\left(loai\right)}\)
xét \(\hept{\begin{cases}h-k=3\\h+k=451\end{cases}}\Leftrightarrow\hept{\begin{cases}h=227\\k=224\end{cases}}\left(loai\right)\)
Xét \(\hept{\begin{cases}h-k=11\\h+k=123\end{cases}}\Leftrightarrow\hept{\begin{cases}h=67\\k=56\end{cases}}\left(nhan\right)\)
Xét \(\hept{\begin{cases}h-k=33\\h+k=41\end{cases}}\Leftrightarrow\hept{\begin{cases}h=37\\k=4\end{cases}}\left(loai\right)\)
Vậy k=56=>abcd=\(k^2=3136\)
Só bị chia sau khi viết nhầm là :
126 x 35 + 27 = 4437
Vậy SBC ban đầu là 7434
làm sai rùi đó sory nhưng mnhf ko rảnh ghi cách giải đslà thương là 135, số dư đúng là 9