K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2016

A=x^4+6x^3+7x^3-6x+1=x^4+6(x^3-2x^2)+(9x^2-6x+1)=x^4+2x^2(3x-1)+(3x-1)^2=(x^2+3x-1)^2

17 tháng 5 2018

a) ( x 2  – 4x + 1)( x 2  – 2x + 3).

b) ( x 2  + 5x – 1)( x 2  + x – 1).

\(x^4+6x^3+7x^2-6x+1\)

\(=x^4-2x^2+1+6x^3+9x^2-6x\)

\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)

\(=\left(x^2+3x-1\right)^2\)

c) Ta có: \(C=4x^2+y^2-4xy+8x-4y+4\)

\(=\left(2x-y\right)^2+2\cdot\left(2x-y\right)\cdot2+2^2\)

\(=\left(2x-y+2\right)^2\)

8 tháng 8 2021

Cho mình xin đáp án câu a và b được không?

5 tháng 3 2020

Ta có \(M=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(\Leftrightarrow M=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(t=x^2+5x+5\)Khi đó

\(M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)

Vì x nguyên nên \(x^2+5x+5\)nguyên \(\Rightarrow\left(x^2+5x+5\right)^2\)là bình phương của 1 số nguyên (đccm)

Hok tốt!!

5 tháng 3 2020

a,M=(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)

đặt x2+5x+5=a ta có

M=(a-1)(a+1)+1

=a2-1+1=a

thay a =x2+5x+5 ta có A=(x2+5x+5)

  vậy M là bình phương của 1 số nguyên với mọi x nguyên

vì x nguyên nên x2+5x+5 nguyên 

17 tháng 1 2015

ở trong toán tt2

 

25 tháng 1 2015

các cậu xét số chính phương chia 3 dư 0 hoặc 1 và số chính phương chia 8 dư 0; 1 hoặc 4

4 tháng 8 2017

\(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)

\(=\left(a+1\right)\left(a+4\right)\left(a+2\right)\left(a+3\right)+1\)

\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)

\(=\left(a^2+5a+4\right)^2+2\left(a^2+5a+4\right)+1\)

\(=\left(a^2+5a+5\right)^2\) là bình phương của 1 số nguyên (đpcm)

4 tháng 8 2017

M=(x+1)(x+4)(x+2)(x+3)+1

=(x2+5x+4)(x2+5x+6)+1

dat x2+5x+5=a ta co 

M=(a+1)(a-1)+1

=a2-1+1

=a2

thay a boi x2+5x+5 ta co M=(x2+5x+5)(1)

ma x la so nguyen nen x2+5x+5 la so nguyen (2)

tu (1) va (2) thi M la binh phuong cua 1 so nguyen

24 tháng 4 2022

a) Thu gọn:

P(x) = x4+(-7x2+4x2)+(x+6x)-2x3-2

P(x) = x4-3x2+7x-2x3-2

Sắp xếp: P(x) = x4-2x3-3x2+7x-2

Thu gọn:

Q(x) = x4+(-3x+x)+(-5x3+6x3)+1

Q(x) = x4-2x+x3+1

Sắp xếp: Q(x)= x4x3-2x+1

b/ Nếu x=2, ta có:

P(2) = 24-2.23-3.22+7.2-2

        = 16 - 2.8 - 3.4 + 14 -2

        = 16-16-12+14-2

        = -12+14-2 

        = 0

=> x=0 là nghiệm của P(x)

Q(2)= 24+ 23-2.2+1

= 16+8-4+1

= 24-4+1

=21

mà 21≠0

Vậy: x=2 không phải là nghiệm của Q(x)

=>

 

22 tháng 9 2020

M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1

= [ ( a + 1 )( a + 4 ) ][ ( a + 2 )( a + 3 ) ] + 1

= ( a2 + 5a + 4 )( a2 + 5a + 6 ) + 1

Đặt t = a2 + 5a + 4

M = t( t + 2 ) + 1

    = t2 + 2t + 1

    = ( t + 1 )2

    = ( a2 + 5a + 4 + 1 )2

    = ( a2 + 5a + 5 )2

Vì a nguyên => a2 + 5a + 5 nguyên

Vậy M =  ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1 là bình phương của một số nguyên ( đpcm )

25 tháng 8 2020

1. \(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)

\(=\left[\left(a+1\right)\left(a+4\right)\right]\left[\left(a+2\right)\left(a+3\right)\right]+1\)

\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)

\(=\left(a^2+5a+4\right)^2+2\left(a^2+5a+4\right)+1\)

\(=\left(a^2+5a+5\right)^2\) 

=> Đpcm

25 tháng 8 2020

M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1

    = [ ( a + 1 )( a + 4 ) ][ ( a + 2 )( a + 3 ) ] + 1

    = [ a2 + 5a + 4 ][ a2 + 5a + 6 ] + 1

Đặt t = a2 + 5a + 4

M <=> t[ t + 2 ] + 1

      = t2 + 2t + 1

      = ( t + 1 )2

      = ( a2 + 5a + 4 + 1 )2 = ( a2 + 5a + 5 )2 ( đpcm )

( x2 + x + 1 )( x2 + x + 2 ) - 12 (*)

Đặt t = x2 + x + 1

(*) <=> t( t + 1 ) - 12

       = t2 + t - 12

       = t2 - 3t + 4t - 12

       = t( t - 3 ) + 4( t - 3 )

       = ( t - 3 )( t + 4 )

       = ( x2 + x + 1 - 3 )( x2 + x + 1 + 4 )

       = ( x2 + x - 2 )( x2 + x + 5 )

       = ( x2 + 2x - x - 2 )( x2 + x + 5 )

       = [ x( x + 2 ) - 1( x + 2 ) ]( x2 + x + 5 )

       = ( x + 2 )( x - 1 )( x2 + x + 5 )