a) 3x+ (-5)= 23
b) I 1-x I +16 +31
c) 3x + 9 là bội của x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có n - 1 là ước của 9
=> ( n - 1 ) \(\in\left\{-9;-3;-1;1;3;9\right\}\)
=> \(n\in\left\{-8;-2;0;2;4;10\right\}\)
vậy \(n\in\left\{-8;-2;0;2;4;10\right\}\)
bài 8
ta có A = \(\left(x+4\right)^2+\left|y-5\right|-7\)
để A nhỏ nhất thì \(\left(x+4\right)^2+\left|y-5\right|-7\) nhỏ nhất
=> \(\left(x+4\right)^2+\left|y-5\right|\) nhỏ nhất
mà \(\left(x+4\right)^2\ge0; \left|y-5\right|\ge0\)
=> \(\left(x+4\right)^2+\left|y-5\right|=0\)
=> Min\(A=\left(x+4\right)^2+\left|y-5\right|-7=0-7=-7\)
vậy gtnn của A = -7
b, tương tự phần a ta được B = 9
Lần sau ghi đề nhớ ghi rõ, đọc đề bạn mình muốn khóc luôn.
\(b.\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\\\Leftrightarrow \frac{21x}{24}-\frac{120\left(x-9\right)}{24}=\frac{80x+6}{24}\\\Leftrightarrow 21x-120x+1080=80x+6\\ \Leftrightarrow-179x=-1074\\\Leftrightarrow x=6\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{6\right\}\)
\(a.2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\\ \Leftrightarrow\frac{10x}{5}+\frac{6}{5}=\frac{25}{5}-\frac{13+5x}{5}\\\Leftrightarrow 10x+6=25-13-5x\\\Leftrightarrow 15x=6\\ \Leftrightarrow x=\frac{2}{5}\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{2}{5}\right\}\)
a) 5 - 4x = 3x - 9
\(\Leftrightarrow5-4x-3x+9=0\)
\(\Leftrightarrow14-7x=0\)
\(\Leftrightarrow7x=14\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
b) \(\left(x-4\right)\left(3x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;4\right\}\)
c) \(\dfrac{x}{x+4}+\dfrac{12}{x-4}=\dfrac{4x+48}{x\cdot x-16}\)(1)
ĐKXĐ: \(x\ne\pm4\)
\(\left(1\right)\Leftrightarrow\dfrac{x\left(x-4\right)+12\left(x+4\right)-4x-48}{\left(x+4\right)\left(x-4\right)}=0\)
\(\Leftrightarrow x^2-4x+12x+48-4x-48=0\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-4\left(KTM\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
d) \(4-2x=7-x\)
\(\Leftrightarrow4-2x-7+x=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\Leftrightarrow x=-3\)
Vậy \(S=\left\{-3\right\}\)
e) \(\left(x+4\right) \left(8-4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\8-4x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-4;2\right\}\)
f) \(\dfrac{x}{x+5}+\dfrac{11}{x-5}=\dfrac{x+55}{x\cdot x-25}\left(2\right)\)
ĐKXĐ: \(x\ne\pm5\)
\(\left(2\right)\Leftrightarrow\dfrac{x\left(x-5\right)+11\left(x+5\right)-x-55}{\left(x+5\right)\left(x-5\right)}=0\)
\(\Leftrightarrow x^2-5x+11x+55-x-55=0\)
\(\Leftrightarrow x^2+5x=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-5\left(KTM\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
g) \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)-3x-1-10-12x}{6}=0\)
\(\Leftrightarrow9x+6-3x-1-10-12x=0\)
\(\Leftrightarrow-6x-5=0\)
\(\Leftrightarrow-6x=5\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
Vậy \(S=\left\{-\dfrac{5}{6}\right\}\)
h) \(2x-\left(3-5x\right)=4\left(x+3\right)\)
\(\Leftrightarrow2x-3+5x-4x-12=0\)
\(\Leftrightarrow3x-15=0\)
\(\Leftrightarrow x=5\)
Vậy \(S=\left\{5\right\}\)
i) \(3x-6+x=9-x\)
\(\Leftrightarrow3x-6+x-9+x=0\)
\(\Leftrightarrow5x-15=0\)
\(\Leftrightarrow x=3\)
Vậy \(S=\left\{3\right\}\)
k)\(2t-3+5t=4t+12\)
\(\Leftrightarrow2t-3+5t-4t-12=0\)
\(\Leftrightarrow3t-15=0\)
\(\Leftrightarrow t=5\)
Vậy \(S=\left\{5\right\}\)
a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 16
x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x - 16 = 0
9x - 9 = 0
9x = 9
x = 1
Vậy x ∈ {1}
b) ( x + 2)(x2 - 2x + 4) - x(x2 - 2) = 16
x3 + 8 - x3 + 2x - 16 = 0
2x - 8 = 0
2x = 8
x = 4
Vậy x ∈ {4}
c) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 17
x3 - 25x - x3 - 8 - 17 = 0
-25x - 25 = 0
-25x = 25
x = -1
Vậy x ∈ {1}
d) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 15
x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 - 15 = 0
45x - 6 = 0
45x = 6
x = \(\frac{2}{15}\)
Vậy x ∈ {\(\frac{2}{15}\)}
\(a,\)( sửa lại xíu đề cho đúng nhé )
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=-\frac{2x}{x^2+x+1}\)
\(\Rightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1-3x^2=-2x^2+2x\)
\(\Rightarrow x=1\)
\(g,\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=-16\)
\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)=-16\)
Đặt \(x^2+10x+16=a\)
\(\Rightarrow a\left(a+8\right)=-16\)
\(\Rightarrow a^2+8a+16=0\)
\(\Rightarrow\left(a+4\right)^2=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Rightarrow x^2+10x+25-25=0\)
\(\Rightarrow\left(x+5\right)^2-\left(\sqrt{5}\right)^2=0\)
\(\Rightarrow\left(x+5-\sqrt{5}\right)\left(x+5+\sqrt{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)