K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2021

 a)

Để học tốt Toán 9 | Giải bài tập Toán 9

b)

Để học tốt Toán 9 | Giải bài tập Toán 9

c)

Để học tốt Toán 9 | Giải bài tập Toán 9

d)

Để học tốt Toán 9 | Giải bài tập Toán 9
 
14 tháng 4 2021

a, \(x^2-5=0\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\Leftrightarrow x=\pm\sqrt{5}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\pm\sqrt{5}\right\}\)

b, \(x^2-2\sqrt{11}x+11=0\Leftrightarrow x^2-2\sqrt{11}x+\left(\sqrt{11}\right)^2=0\)

\(\Leftrightarrow\left(x-\sqrt{11}\right)^2=0\Leftrightarrow x=\sqrt{11}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\sqrt{11}\right\}\)

14 tháng 4 2021

x2 - 5 = 0

Δ = b2 - 4ac = 0 + 20 = 20

Δ > 0, áp dụng công thức nghiệm thu được x = ±√5

x2 - 2√11x + 11 = 0

Δ = b2 - 4ac = 44 - 44 = 0

Δ = 0 => phương trình có nghiệm kép x1 = x2 = -b/2a = √11

23 tháng 5 2021

a) -17√3/3                                                  b) 11√6 

c) 21                                                            d) 11

29 tháng 5 2021

a)  a) Biến đổi vế trái thành 326+236426326+236−426 và làm tiếp.
b) Biến đổi vế trái thành (6x+136x+6x):6x(6x+136x+6x):6x và làm tiếp

19 tháng 4 2021

a, Ta có  \(\sqrt{25-16}=\sqrt{9}=3\)

\(\sqrt{25}-\sqrt{16}=5-4=1\)

Do 3 > 1 nên \(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

13 tháng 5 2021

a) căn 25 - 16  > căn 25 - căn 16

 

b)Với a>b>0a>b>0 nên  \sqrt{a},\sqrt{b},\sqrt{a-b}a,b, đều xác định

 

Để so sánh \sqrt{a}-\sqrt{b}ab và \sqrt{a-b} ta quy về so sánh \sqrt{a}a và \sqrt{a-b}+\sqrt{b}+b.

 

+) (\sqrt{a})^2=a(a)2=a.

                                       

+) (\sqrt{a-b}+\sqrt{b})^2=(\sqrt{a-b})^2+2\sqrt{a-b}.\sqrt{b}+(\sqrt{b})^2=a-b+b+2\sqrt{a-b}.\sqrt{b}=a+2\sqrt{a-b}.\sqrt{b}(+b)2=()2+2.b+(b)2=ab+b+2.b=a+2

.b.

Do a>b>0a>b>0 nên 2\sqrt{a-b}.\sqrt{b}>02.b>0

 

 

\Rightarrow a+2\sqrt{a-b}.\sqrt{b}>aa+2.b>a

 

\Rightarrow (\sqrt{a-b}+\sqrt{b})^2>(\sqrt{a})^2(+b)2>(a)2

 

Do \sqrt{a},\sqrt{a-b}+\sqrt{b}>0a,+b>0 

 

\Rightarrow \sqrt{a-b}+\sqrt{b}>\sqrt{a}+b>a

 

\Leftrightarrow \sqrt{a-b}>\sqrt{a}-\sqrt{b}>ab (đpcm)

 

Vậy \sqrt{a-b}>\sqrt{a}-\sqrt{b}>ab.

\(a,B=4\sqrt{x=1}-3\sqrt{x+1}+2\)\(\sqrt{x+1}+\sqrt{x+1}\)

\(=4\sqrt{x+1}\)

\(b,\)đưa về \(\sqrt{x+1}=4\Rightarrow x=15\)

29 tháng 4 2021

a, Với \(x\ge-1\)

\(\Rightarrow B=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)

\(=4\sqrt{x+1}\)

b, Ta có B = 16 hay 

\(4\sqrt{x+1}=16\Leftrightarrow\sqrt{x+1}=4\)bình phương 2 vế ta được 

\(\Leftrightarrow x+1=16\Leftrightarrow x=15\)

25 tháng 4 2021

LG a

(1−a√a1−√a+√a).(1−√a1−a)2=1(1−aa1−a+a).(1−a1−a)2=1 với a≥0a≥0 và a≠1a≠1

Phương pháp giải:

+ Biến đối vế trái thành vế phải ta sẽ có điều cần chứng minh.

+ √A2=|A|A2=|A|. 

+ |A|=A|A|=A    nếu    A≥0A≥0,

    |A|=−A|A|=−A     nếu    A<0A<0.

+ Sử dụng các hằng đẳng thức:

         a2+2ab+b2=(a+b)2a2+2ab+b2=(a+b)2

         a2−b2=(a+b).(a−b)a2−b2=(a+b).(a−b).

         a3−b3=(a−b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2).

Lời giải chi tiết:

Biến đổi vế trái để được vế phải.

Ta có: 

VT=(1−a√a1−√a+√a).(1−√a1−a)2VT=(1−aa1−a+a).(1−a1−a)2

       =(1−(√a)31−√a+√a).(1−√a(1−√a)(1+√a))2=(1−(a)31−a+a).(1−a(1−a)(1+a))2

       =((1−√a)(1+√a+(√a)2)1−√a+√a).(11+√a)2=((1−a)(1+a+(a)2)1−a+a).(11+a)2

       =[(1+√a+(√a)2)+√a].1(1+√a)2=[(1+a+(a)2)+a].1(1+a)2

       =[(1+2√a+(√a)2)].1(1+√a)2=[(1+2a+(a)2)].1(1+a)2

       =(1+√a)2.1(1+√a)2=1=VP=(1+a)2.1(1+a)2=1=VP.

LG b

a+bb2√a2b4a2+2ab+b2=|a|a+bb2a2b4a2+2ab+b2=|a| với a+b>0a+b>0 và b≠0b≠0

Phương pháp giải:

+ Biến đối vế trái thành vế phải ta sẽ có điều cần chứng minh.

+ √A2=|A|A2=|A|. 

+ |A|=A|A|=A    nếu    A≥0A≥0,

    |A|=−A|A|=−A     nếu    A<0A<0.

+ Sử dụng các hằng đẳng thức:

         a2+2ab+b2=(a+b)2a2+2ab+b2=(a+b)2

         a2−b2=(a+b).(a−b)a2−b2=(a+b).(a−b).

         a3−b3=(a−b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2).

Lời giải chi tiết:

Ta có:

VT=a+bb2√a2b4a2+2ab+b2VT=a+bb2a2b4a2+2ab+b2

      =a+bb2√(ab2)2(a+b)2=a+bb2(ab2)2(a+b)2

     =a+bb2√(ab2)2√(a+b)2=a+bb2(ab2)2(a+b)2

     =a+bb2|ab2||a+b|=a+bb2|ab2||a+b|

     =a+bb2.|a|b2a+b=|a|=VP=a+bb2.|a|b2a+b=|a|=VP

Vì a+b>0⇒|a+b|=a+ba+b>0⇒|a+b|=a+b.

16 tháng 4 2021

a) Ta có: 

+)√25+9=√34+)25+9=34.

+)√25+√9=√52+√32=5+3+)25+9=52+32=5+3

=8=√82=√64=8=82=64.

Vì 34<6434<64 nên √34<√6434<64

Vậy √25+9<√25+√925+9<25+9

b) Với a>0,b>0a>0,b>0, ta có

+)(√a+b)2=a+b+)(a+b)2=a+b.

+)(√a+√b)2=(√a)2+2√a.√b+(√b)2+)(a+b)2=(a)2+2a.b+(b)2

 =a+2√ab+b=a+2ab+b

 =(a+b)+2√ab=(a+b)+2ab. 

Vì a>0, b>0a>0, b>0 nên √ab>0⇔2√ab>0ab>0⇔2ab>0

⇔(a+b)+2√ab>a+b⇔(a+b)+2ab>a+b

⇔(√a+√b)2>(√a+b)2⇔(a+b)2>(a+b)2

⇔√a+√b>√a+b⇔a+b>a+b (đpcm)

17 tháng 4 2021

a, Ta có : \(\sqrt{25+9}=\sqrt{34}\)

\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)

mà 34 < 64 hay \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)

b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)

bình phương 2 vế ta được : \(a+b< a+2\sqrt{ab}+b\)

\(\Leftrightarrow2\sqrt{ab}>0\)vì \(a;b>0\)nên đẳng thức này luôn đúng )

Vậy ta có đpcm 

17 tháng 5 2021

\(\sqrt{\dfrac{1}{600}}\)=\(\sqrt{\dfrac{1}{10^2\cdot6}}\)=\(\sqrt{\dfrac{1\cdot6}{10^2\cdot6\cdot6}}\)=\(\dfrac{\sqrt{6}}{60}\)

\(\sqrt{\dfrac{11}{540}}\)=\(\sqrt{\dfrac{11\cdot540}{540\cdot540}}\)=\(\dfrac{\sqrt{5940}}{540}\)=\(\dfrac{\sqrt{165}}{90}\)

\(\sqrt{\dfrac{3}{50}}\)=\(\sqrt{\dfrac{3\cdot50}{50\cdot50}}\)=\(\dfrac{\sqrt{150}}{50}\)=\(\dfrac{\sqrt{6}}{10}\)

\(\sqrt{\dfrac{5}{98}}\)=\(\sqrt{\dfrac{5\cdot98}{98\cdot98}}=\dfrac{\sqrt{490}}{98}=\dfrac{\sqrt{10}}{14}\)

\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)

17 tháng 5 2021

\(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{6}}{60}\)

\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)

\(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{6}}{10}\)

\(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{10}}{14}\)

\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)

29 tháng 4 2021

a, \(\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\)

Với \(x\ge\frac{1}{2}\)pt có dạng : \(2x-1=3\Leftrightarrow x=2\)( tm )

Với \(x< \frac{1}{2}\)pt có dạng : \(-2x+1=3\Leftrightarrow x=-1\)( tm ) 

Vậy tập nghiệm của pt là S = { -1 ; 2 } 

b, \(\frac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\)ĐK : \(x\ge0\)

\(\Leftrightarrow\frac{2}{3}\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\Leftrightarrow\frac{1}{3}\sqrt{15x}=2\)

\(\Leftrightarrow\sqrt{15x}=6\)bình phương 2 vế : \(\Leftrightarrow15x=36\Leftrightarrow x=\frac{36}{15}=\frac{12}{5}\)( tm ) 

Vậy tập nghiệm của pt là S = { 12/5 } 

17 tháng 5 2021
) √ ( 2 x − 1 ) 2 = 3 ⇒ | 2 x − 1 | = 3 ⇔ 2 x − 1 = ± 3 +) TH1: 2 x − 1 = 3 ⇒ 2 x = 4 ⇒ x = 2 +) TH2: 2 x − 1 = − 3 ⇒ 2 x = − 2 ⇒ x = − 1 Vậy x = − 1 ; x = 2 . b) Điều kiện: x ≥ 0 5 3 √ 15 x − √ 15 x − 2 = 1 3 √ 15 x ⇔ 5 3 √ 15 x − √ 15 x − 1 3 √ 15 x = 2 ⇔ ( 5 3 − 1 − 1 3 ) √ 15 x = 2 ⇔ 1 3 √ 15 x = 2 ⇔ √ 15 x = 6 ⇔ 15 x = 36 ⇔ x = 12 5 Vậy x = 12 5 .
16 tháng 4 2021

a) Điều kiện: x≥0x≥0

√16x=816x=8⇔(√16x)2=82⇔(16x)2=82 ⇔16x=64⇔16x=64 ⇔x=6416⇔x=4⇔x=6416⇔x=4 (thỏa mãn điều kiện)

Vậy x=4x=4.

Cách khác: 

√16x=8⇔√16.√x=8⇔4√x=8⇔√x=2⇔x=22⇔x=416x=8⇔16.x=8⇔4x=8⇔x=2⇔x=22⇔x=4

b) Điều kiện: 4x≥0⇔x≥04x≥0⇔x≥0

 √4x=√54x=5 ⇔(√4x)2=(√5)2⇔4x=5⇔x=54⇔(4x)2=(5)2⇔4x=5⇔x=54 (thỏa mãn điều kiện) 

Vậy x=54x=54.

c) Điều kiện: 9(x−1)≥0⇔x−1≥0⇔x≥19(x−1)≥0⇔x−1≥0⇔x≥1

√9(x−1)=219(x−1)=21⇔3√x−1=21⇔3x−1=21⇔√x−1=7⇔x−1=7 ⇔x−1=49⇔x=50⇔x−1=49⇔x=50 (thỏa mãn điều kiện)

Vậy x=50x=50.

Cách khác:

√9(x−1)=21⇔9(x−1)=212⇔9(x−1)=441⇔x−1=49⇔x=509(x−1)=21⇔9(x−1)=212⇔9(x−1)=441⇔x−1=49⇔x=50

d) Điều kiện: x∈Rx∈R (vì 4.(1−x)2≥04.(1−x)2≥0 với mọi x)x)

√4(1−x)2−6=04(1−x)2−6=0⇔2√(1−x)2=6⇔2(1−x)2=6 ⇔|1−x|=3⇔|1−x|=3 ⇔[1−x=31−x=−3⇔[1−x=31−x=−3 ⇔[x=−2x=4⇔[x=−2x=4 

Vậy x=−2;x=4.



 

17 tháng 4 2021

a, \(\sqrt{16x}=8\Leftrightarrow4\sqrt{x}=8\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

b, \(\sqrt{4x}=\sqrt{5}\)ĐK : x \(\ge0\)

bình phương 2 vế ta được : \(4x=5\Leftrightarrow x=\frac{5}{4}\)

c, \(\sqrt{9\left(x-1\right)}=21\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\)

bình phương 2 vế ta được : \(x-1=49\Leftrightarrow x=50\)

d, \(\sqrt{4\left(1-x\right)^2}-6=0\Leftrightarrow2\left|1-x\right|=6\Leftrightarrow\left|1-x\right|=3\)

TH1 : \(1-x=3\Leftrightarrow x=-2\)

TH2 : \(1-x=-3\Leftrightarrow x=4\)