tìm x,y,z nguyên biết x2+y2+z2-yz-4x-3y+7=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+y^2+z^2-yz-4x-3y+2027\)
\(\Rightarrow4A=4x^2+4y^2+4z^2-4yz-16x-12y+8108=4x^2-16x+16+3y^2+12y+12+y^2-4yz+4z^2+8080=4\left(x-2\right)^2+3\left(y+2\right)^2+\left(y-2z\right)^2+8080\)
Vì \(4\left(x-2\right)^2\ge0\)
\(3\left(y+2\right)^2\ge0\)
\(\left(y-2z\right)^2\ge0\)
\(\Rightarrow4A\ge8080\Rightarrow A\ge2020\)
\(ĐTXR\Leftrightarrow x=2,y=-2,z=-1\)
+) Tìm trên mạng thì đề thiếu xy + yz - zx = 7
+) Nếu bổ sung đề: Tìm x; y ; z nguyên dương thì có thể làm như sau:
Không mất tính tổng quát: g/s:
x ≥ y ≥ z
Vì x2 + y2 + z2 = 14 =>
x 2 ≤ 14
⇒ x ≤ √ 14 < 4
Vì x nguyên dương
=> x ∈ { 1; 2; 3}
+)Vớix=3=>\hept{y+z=3y2+z2=5⇒\hept{y+z=y2≤5
Bạn tham khảo lời giải tại đây:
cho các số thực dưong x,y,z thỏa mãn : x2 y2 z2=3chứng minh rằng : \(\dfrac{x}{\sqrt[3]{yz}} \dfrac{y}{\sqrt[3]{zx}} \df... - Hoc24
Cách khác:
Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:
\(\sum \frac{x}{\sqrt[3]{yz}}\geq \sum \frac{x}{\frac{y+z+1}{3}}=3\sum \frac{x}{y+z+1}=3\sum \frac{x^2}{xy+xz+x}\)
\(\geq 3. \frac{(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\)
Ta sẽ chứng minh: \(\frac{3(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\geq xy+yz+xz(*)\)
Đặt $x+y+z=a$ thì $xy+yz+xz=\frac{a^2-3}{2}$
Bằng BĐT AM-GM dễ thấy $\sqrt{3}< a\leq 3$
BĐT $(*)$ trở thành:
$\frac{3a^2}{a^2+a-3}\geq \frac{a^2-3}{2}$
$\Leftrightarrow a^4+a^3-12a^2-3a+9\leq 0$
$\Leftrightarrow (a-3)(a+1)(a^2+3a-3)\leq 0$
Điều này đúng với mọi $\sqrt{3}< a\leq 3$
Do đó BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
Lời giải:
Từ điều kiện đề bài suy ra:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}$
$\Rightarrow (\frac{x}{y})^3=(\frac{y}{z})^3=(\frac{z}{x})^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{x}=1$
$\Rightarrow \frac{x}{y}=\frac{y}{z}=\frac{z}{x}=1$
$\Rightarrow x=y=z$.
Do đó:
$\frac{(x+y+z)^{2022}}{x^{337}.y^{674}.z^{1011}}=\frac{(3x)^{2022}}{x^{337}.x^{674}.x^{1011}}=\frac{3^{2022}.x^{2022}}{x^{2022}}=3^{2022}$
Lời giải:
Từ điều kiện đề bài suy ra:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}$
$\Rightarrow (\frac{x}{y})^3=(\frac{y}{z})^3=(\frac{z}{x})^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{x}=1$
$\Rightarrow \frac{x}{y}=\frac{y}{z}=\frac{z}{x}=1$
$\Rightarrow x=y=z$.
Do đó:
$\frac{(x+y+z)^{2022}}{x^{337}.y^{674}.z^{1011}}=\frac{(3x)^{2022}}{x^{337}.x^{674}.x^{1011}}=\frac{3^{2022}.x^{2022}}{x^{2022}}=3^{2022}$
x2+y2+z2-yz-4x-3y+7=0
<=> x2 - 4x + 4 +\(\frac{y^2}{4}\)- 2\(\frac{y}{2}\)z + z2 + \(\frac{3}{4}\)y2 - 3y+ 3 = 0
<=> (x - 2)2 + (\(\frac{y}{2}\)- z)2 + 3(\(\frac{y}{2}\)- 1)2 =0
Vậy x,y,z luôn nguyên
sai chỗ nào mong các bạn chỉnh sửa giúp mình ạk!!!!! ^.,..* O.o