Cho tg ABC, M la trug điểm của AC. Trên tia đối của tia MB lấy N sao cko MN=MB
a) cm tg AMN=tg CMB
b)trên tia BM lấy E trên tia NM lấy F sao cho BE=NF. cm AF=CE, AF song song CE
C) kẻ MH vuông góc BC, tia HM cắt AN tại K.Tính góc AKM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMN và CMB có: MB = MN ; góc BMC = NMA; MC = MA
=> tam giác AMN = tam giác CNB ( c - g - c)
b) Ta có ME = MB - BE; MF = MN - NF
Mà MB = MN; BE = NF (gt)
Nên ME = MF
Xét tam giác MAF và MCE có: MA = MC; góc AMF = CME; MF = ME
=> tam giác MAF = tam giác MCE ( c - g - c)
=> AF = CE ( 2 cạnh tương ứng)
c) Ta có góc NAM = MCB ( tam giác AMN = CMB)
Mà hai góc này ở vị trí So le trong nên AN // BC
ta có MH | BC nên MH | AN tại Km => góc AKM = 90o
a)2 tam giác bằng nhau theo TH c-g-c
b)cm tam giác MEC=tam giác MFA(c-g-c)
=>EC=FA(2 cạnh tương ứng)
a) Xét \(\Delta AMN,\Delta CMB\) có:
\(AM=MC\) (M là trung điểm của AC)
\(\widehat{AMN}=\widehat{CMB}\) (đối đỉnh)
\(NM=MB\left(gt\right)\)
=> \(\Delta AMN=\Delta CMB\left(c.g.c\right)\)
b) Xét \(\Delta EBC,\Delta FNA\) có :
\(AN=BC\) [từ \(\Delta AMN=\Delta CMB\left(cmt\right)\)]
\(\widehat{EBC}=\widehat{FNA}\) [\(\Delta AMN=\Delta CMB\left(cmt\right)\))
\(BE=NF\left(gt\right)\)
=> \(\Delta EBC=\Delta FNA\left(c.g.c\right)\)
=> \(AF=CE\) (2 cạnh tương ứng)
c) Xét \(\Delta MBH,\Delta MNK\) có :
\(\widehat{BMK}=\widehat{NMK}\) (đối đỉnh)
\(BM=MN\left(gt\right)\)
\(\widehat{MBH}=\widehat{MNK}\) [từ \(\Delta AMN=\Delta CMB\left(cmt\right)\)]
=> \(\Delta MBH=\Delta MNK\left(g.c.g\right)\)
=> KM= HM (2 cạnh tương ứng)
Xét \(\Delta AMK,\Delta CMH\) có :
\(AM=MC\) (M là trung điểm của BC)
\(\widehat{AMK}=\widehat{CMH}\) (đối đỉnh)
\(KM=HM\left(cmt\right)\)
=> \(\Delta AMK=\Delta CMH\left(c.g.c\right)\)
=> \(\widehat{AKM}=\widehat{CHM}=90^{^o}\) (2 góc tương ứng)
Vậy \(\widehat{AKM}=90^o\)