Cho x,y là hai đại lượng tỉ lệ thuận.Gọi x1,x2 là hai giá trị tương ứng của x.Gọi y1,y2 là hai giá trị tương ứng của y:
a) Tìm x1, y1(biết 2x1=6y1).
b)x1=2.x2, y2=10.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x_1}{x_2}=\frac{y_2}{y_1}\Rightarrow\frac{y_1}{x_2}=\frac{y_2}{x_1}=\frac{y_1+y_2}{x_2+x_1}\left(1\right)\)
Vì \(x_1=5,x_2=2\)và \(y_1+y_2=21\)nên từ \(\left(1\right)\)ta có :
\(\frac{y_1}{2}=\frac{y_2}{5}=\frac{y_1+y_2}{2+5}=\frac{21}{7}=3\left(2\right)\)
Từ (2) => \(\orbr{\begin{cases}\frac{y_1}{2}=3\\\frac{y_2}{5}=3\end{cases}}\Rightarrow\orbr{\begin{cases}y_1=6\\y_2=15\end{cases}}\)
b) Ta có : \(\frac{x_1}{x_2}=\frac{y_2}{y_1}=\frac{2x_1}{2x_2}=\frac{3y_2}{3y_1}=\frac{2x_1-3y_2}{2x_2-3y_1}\left(1\right)\)
Vì \(x_2=3,y_1=7\)và \(2x_1-3y_2=30\)nên từ \(\left(1\right)\)ta có :
\(\frac{x_1}{3}=\frac{y_2}{7}=\frac{2x_1-3y_2}{2\cdot3-3\cdot7}=\frac{30}{-15}=-2\left(2\right)\)
Từ \(\left(2\right)\)suy ra : \(\orbr{\begin{cases}\frac{x_1}{3}=-2\\\frac{y_2}{7}=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x_1=-6\\y_2=-14\end{cases}}\)
Câu b x2 = 3(tính rồi nhé,sửa câu đó lại nhé),phải tính x1 và y2 mới đúng.
a, Ta có: 2 . x1 = 5 . y1
\(\Rightarrow\frac{x_1}{5}=\frac{y_1}{2}\)\(\Rightarrow\frac{2x_1}{10}=\frac{3y_1}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x_1}{10}=\frac{3y_1}{6}=\frac{2x_1-3y_1}{10-6}=\frac{12}{4}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x_1}{5}=3\\\frac{y_1}{2}=3\end{cases}}\Rightarrow\hept{\begin{cases}x_1=15\\y_1=6\end{cases}}\)
b, Vì x và y là 2 đại lượng tỉ lệ nghịch
=> x1 . y1 = a
=> 15 . 6 = a
=> 90 = a
=> x1 = 90 : y1 và x2 = 90 : y2
Ta có: x1 = 2 . x2
\(\Rightarrow\frac{90}{y_1}=2.\frac{90}{y_2}\)\(\Rightarrow\frac{90}{y_1}=\frac{180}{10}\)\(\Rightarrow y_1=\frac{90.10}{180}=5\)
P/s: trình bày khá ngu :<
Lời giải:
Đặt $y=kx$ thì:
$y_1=kx_1$
$y_2=kx_2$
$\Rightarrow y_1-y_2=k(x_1-x_2)$
$\Leftrightarrow 6=k(-2)\Rightarrow k=-3$
Vậy $y=-3x$
Với $y=-15$ thì $-15=-3x$
$\Rightarrow x=5$
Lời giải:
a. Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$ với $k$ là số thực nào đó.
Ta có:
$x_1y_1=k=x_2y_2$
$\Leftrightarrow 7x_1=8y_2\Rightarrow x_1=\frac{8}{7}y_2$
Thay vô điều kiện 1 thì:
$2.\frac{8}{7}y_2-3y_2=30$
$\Leftrightarrow y_2=-42$
$x_1=\frac{8}{7}y_2=-48$
b. Từ kết quả phần a suy ra:
$xy=x_1y_1=-48.7=-336$
$\Rightarrow y=\frac{-336}{x}$
x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
suy ra x1=x2.y1/y2 = 2.(-3/4):1/7 =-21/2
b) x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
<=> x1/x2 = y1/y2 = (y1-x1)/(y2-x2) (theo t/c của dãy tỷ số bằng nhau)
Thay số ta có:
x1/(-4) = y1/3=-2/(3-(-4))
<=> x1/(-4) = y1/3=-2/7
suy ra:
x1 = (-4).(-2/7)=8/7
y1 = 3.(-2/7)=-6/7
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ