Rút gọn biểu thức:
\(\frac{x^2+x-6}{x^3-4x^2-12x+19}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4x}{x^2-2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)
\(A=\frac{4x}{x\left(x-2\right)}-\frac{3}{x-2}+\frac{12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x\left(x+2\right)-3x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x^2+2x+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x^2+14x}{x\left(x-2\right)\left(x+2\right)}\)
c: C=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2(x^2-4)
=250x^3+120x-2x^2+8
=250x^3-2x^2+120x+8
d: D=(4x)^3-3^3-(4x)^3-3^3
=64x^3-27-64x^3-27
=-54
c) \(C=\left(5x+2\right)^3+\left(5x-2\right)^3-2\left(x-2\right)\left(x+2\right)\)
\(=\left[\left(5x\right)^3+3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2+2^3\right]+\left[\left(5x\right)^3-3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2-2^3\right]-2\left(x^2-4\right)\)
\(=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2x^2+8\)
\(=\left(125x^3+125x^3\right)+\left(150x^2-150x^2-2x^2\right)+\left(60x+60x\right)+\left(8-8+8\right)\)
\(=250x^3-2x^2+120x+8\)
d) \(D=\left(4x-3\right)\left(16x^2+12x+9\right)-\left(4x+3\right)\left(16x^2-12x+9\right)\)
\(=\left(4x\right)^3-3^3-\left[\left(4x\right)^3+3^3\right]\)
\(=64x^3-27-\left(64x^3+27\right)\)
\(=64x^3-27-64x^3-27\)
\(=-27-27\)
\(=-54\)
Đặt \(A=\frac{x^2+x-6}{x^3-4x^2-18x+9}\)
\(A=\frac{x^2+3x-2x-6}{x^3+3x^2-7x^2-21x+3x+9}\)
\(A=\frac{x\left(x+3\right)-2\left(x+3\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)
\(A=\frac{\left(x-2\right)\left(x+3\right)}{\left(x^2-7x+3\right)\left(x+3\right)}\)
\(A=\frac{x-2}{x^2-7x+3}\)
Mình thử nha :33
ĐKXĐ : \(x\ne-3,x\ne-26,x\ne-6,x\ne1\)
Ta có :
\(A=\left[\frac{3}{2}-\left(\frac{x^4\left(x^2+1\right)-x^4-1}{x^2+1}\right)\cdot\frac{x^3-4x^2+\left(x-4\right)}{x^6\left(x+6\right)-\left(x+6\right)}\right]:\frac{\left(x+3\right)\left(x+26\right)}{3\left(x-2\right)\left(x+6\right)}\)
\(=\left[\frac{3}{2}-\left(\frac{x^6-1}{x^2+1}\right)\cdot\frac{\left(x-4\right)\left(x^2+1\right)}{\left(x+6\right)\left(x^6-1\right)}\right]\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)
\(=\left[\frac{3}{2}-\frac{x-4}{x+6}\right]\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)
\(=\frac{x+26}{2\left(x+6\right)}\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)
\(=\frac{3\left(x-2\right)}{2\left(x+3\right)}\)
Vậy : \(A=\frac{3\left(x-2\right)}{2\left(x+3\right)}\left(x\ne-3,x\ne-26,x\ne-6,x\ne1\right)\)
\(A=\)\(\frac{x|x-2|}{x^2+8x-20}+12x-3.\)
\(=\frac{x|x-2|}{\left(x-2\right)\left(x+10\right)}+12x-3\)
Nếu \(x\ge2\Rightarrow x-2\ge0\Leftrightarrow|x-2|=x-2\)
\(\Rightarrow A=\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3=\frac{x}{x+10}+12x-3\)
Nếu \(x< 2\Rightarrow x-2< 0\Leftrightarrow|x-2|=-\left(x-2\right)\)
\(\Rightarrow A=\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3=\frac{-x}{x+10}+12x-3\)
\(\frac{x^2+x-6}{x^3-4x^2-18x+9}=\frac{x^2+3x-2x-6}{x^3+3x^2-7x^2-21x+3x+9}\)
\(=\frac{x\left(x+3\right)-2\left(x+3\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)
\(=\frac{\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x^2-7x+3\right)}=\frac{x-2}{x^2-7x+3}\) (điều kiện: x khác -3)
t phân tích \(x^2-7x+3\) được như này =))
\(x^2-7x+3=x^2-2.x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\frac{49}{4}+3\)
\(=\left(x-\frac{7}{2}\right)^2-\frac{37}{4}\)
\(=\left(x-\frac{7}{2}\right)^2-\left(\frac{\sqrt{37}}{2}\right)^2\)
\(=\left(x-\frac{7}{2}-\frac{\sqrt{37}}{2}\right)\left(x-\frac{7}{2}+\frac{\sqrt{37}}{2}\right)\)
\(=\left(x-\frac{7+\sqrt{37}}{2}\right)\left(x-\frac{7-\sqrt{37}}{2}\right)\)