K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

ta có A = 1! + 2! + 3! + ... + 2015!

           = (...0)

3 tháng 12 2015

1a) 4^21=(4^2)^10.4=(....6)^10.4=(......6).4=(.......4)

b) 3^100=(3^4)^25=(.....1)^25=(.....1)

4 tháng 12 2015

Cho A=2015^2016a) Tìm số dư của A khi chia cho 7 b) Tìm 2 chữ số tận cùng của A( Làm đồng dư thức )

tíc xong mình giải cho

 

9 tháng 12 2018

đặt A=\(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+2015\)

        =\(\left(x^2+10x+16\right)\left(x^2+10x+24\right)+2015\)

         =\(\left(x^2+10x+21-5\right)\left(x^2+10x+21+3\right)+2015\)

         =\(\left(x^2+10x+21\right)^2-5\left(x^2+10x+21\right)+3\left(x^2+10x+21\right)-15+2015\)

         =\(\left(x^2+10x+21\right)^2-2\left(x^2+10x+21\right)+2000\)

vì \(\left(x^2+10x+21\right)^2⋮x^2+10x+21\);\(-2\left(x^2+10x+21\right)⋮x^2+10x+21\)

SUY RA        A\(:x^2+10x+21,\forall x\inℝ\)dư 2000

                                        đáp số 2000

                                                                               kb với mk nha!!!!