Cho F(x)=5/4x^2 + 2x + 2. Chứng minh rằng đa thức F(x) không thể nhận giá trị bằng 0 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = 2x3 - 2x2 + 3x - 2 (1)
g(x) = 2 - x3 - 2x - x3 - x = 2 - 2x3 - x (2)
lấy (1) + (2), ta đc:
2x3 - 2x2 + 3x - 2
+ - 2x3 -x + 2
------------------------------------
-2x2 + 2x
=> -2x2 + 2x = 2x - 2x2
....................... (chỉ cần chứng minh f(x) + g(x) âm thì f(x) và g(x) ko thể cùng nhận giá trị dương)
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
a) Rút gọn E Þ đpcm.
b) Điều kiện xác định E là: x ≠ ± 1
Rút gọn F ta thu được F = 4 Þ đpcm
\(f\left(1\right)=a+b+c;f\left(5\right)=25a+5b+c\)
\(f\left(1\right)+f\left(5\right)=a+b+c+25a+5a+c=26a+6a+2c=2\left(13a+3a+c\right)>0\)
Ta có:
\(F\left(x\right)=\frac{5}{4}x^2+2x+2\)
\(F\left(x\right)=\frac{1}{4}+x^2+x+x+2\)
\(F\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+2+\frac{1}{4}\)
\(F\left(x\right)=x\left(x+1\right)+\left(x+1\right)+\frac{8}{4}+\frac{1}{4}\)
\(F\left(x\right)=\left(x+1\right)\left(x+1\right)+\frac{9}{4}\)
\(F\left(x\right)=\left(x+1\right)^2+\frac{9}{4}\)
Ta có:
\(\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)+\frac{9}{4}\ge\frac{9}{4}\)
=> Đa thức \(F\left(x\right)\)không thể nhận giá trị \(0\)