cho 2x2 + 5y2 + 9z2 =2(xy+3yz+3xz)
tính M = \(\frac{x^3+y^3+z^3}{x^2y+y^2z+x^2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $(x,2y,3z)=(a,b,c)$. Khi đó bài toán trở thành:
Cho $a,b,c>0$ thỏa mãn $a+b+c=2$. Tìm GTLN của:
\(S=\sqrt{\frac{ab}{ab+2c}}+\sqrt{\frac{bc}{bc+2a}}+\sqrt{\frac{ca}{ac+2b}}\)
------------------------------------
Từ $a+b+c=2$ ta có:
\(S=\sqrt{\frac{ab}{ab+(a+b+c)c}}+\sqrt{\frac{bc}{bc+(a+b+c)a}}+\sqrt{\frac{ca}{ac+(a+b+c)b}}\)
\(=\sqrt{\frac{ab}{(c+a)(c+b)}}+\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ca}{(b+c)(b+a)}}\)
Áp dụng BĐT Cauchy:
\(\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
\(\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
\(\sqrt{\frac{ca}{(b+a)(b+c)}}\leq \frac{1}{2}\left(\frac{a}{b+a}+\frac{c}{b+c}\right)\)
Cộng theo vế:
\(S\leq \frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{3}{2}\)
Vậy $S_{\max}=\frac{3}{2}$. Dấu "=" xảy ra khi $a=b=c$
hay $x=\frac{2}{3}; y=\frac{1}{3}; z=\frac{2}{9}$
bài này có trên OLM do a Dw ( incursion_03 ) giải nè.Đề tuyển sinh vào lớp 10 Dak Lak
a) \(\left\{{}\begin{matrix}a=x\\b=2y\\c=3z\end{matrix}\right.\Rightarrow a+b+c=2;a,b,c>0\)
\(\Rightarrow S=\sqrt{\dfrac{\dfrac{ab}{2}}{\dfrac{ab}{2}+c}}+\sqrt{\dfrac{\dfrac{bc}{2}}{\dfrac{bc}{2}+a}}+\sqrt{\dfrac{ca}{ca+2b}}\)
\(=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)
Vì a,b,c>0 nên áp dụng BĐT AM-GM, ta có:
\(\sqrt{\dfrac{ab}{ab+2c}}=\sqrt{\dfrac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\dfrac{ab}{c^2+bc+ca+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\dfrac{a}{a+c}}.\sqrt{\dfrac{b}{b+c}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
\(\sqrt{\dfrac{bc}{bc+2a}}=\sqrt{\dfrac{bc}{\left(b+a\right)\left(c+a\right)}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\)
\(\sqrt{\dfrac{ca}{ca+2b}}=\sqrt{\dfrac{ca}{\left(c+b\right)\left(a+b\right)}}\le\dfrac{1}{2}\left(\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)\)
\(\Rightarrow S\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi: a=b=c=2/3=>\(\left(x,y,z\right)=\left\{\dfrac{2}{3};\dfrac{1}{3};\dfrac{2}{9}\right\}\)
Đặt \(\left(x;2y;3z\right)=\left(a;b;c\right)\Rightarrow a+b+c=2\)
\(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)
\(S=\sqrt{\dfrac{ab}{ab+c\left(a+b+c\right)}}+\sqrt{\dfrac{bc}{bc+a\left(a+b+c\right)}}+\sqrt{\dfrac{ca}{ca+b\left(a+b+c\right)}}\)
\(S=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(S\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\Rightarrow x;y;z\)
Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c>0\right)\Rightarrow a+b+c=2\)
Khi đó \(S=\Sigma\sqrt{\frac{\frac{ab}{2}}{\frac{ab}{2}+c}}=\Sigma\sqrt{\frac{ab}{ab+2c}}=\Sigma\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}\)
\(=\Sigma\sqrt{\frac{ab}{ab+bc+ca+c^2}}=\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)
Áp dụng bđt Cô-si có
\(S\le\frac{\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)}{2}=\frac{3}{2}\)
Áp dụng bđt \(\frac{a}{b+c+d}\le\frac{1}{9}\left(\frac{a}{b}+\frac{a}{c}+\frac{a}{d}\right)\) ta có :
\(\frac{xy}{2x+y}\le\frac{1}{9}\left(\frac{xy}{x}+\frac{xy}{x}+\frac{xy}{y}\right)=\frac{1}{9}\left(2y+x\right)\)
\(\frac{3yz}{2y+z}\le3.\frac{1}{9}\left(\frac{yz}{y}+\frac{yz}{y}+\frac{yz}{z}\right)=\frac{1}{3}\left(2z+y\right)\)
\(\frac{6xz}{2z+x}\le6.\frac{1}{9}\left(\frac{xz}{z}+\frac{xz}{z}+\frac{xz}{x}\right)=\frac{2}{3}\left(2x+z\right)\)
\(\Rightarrow M\le\frac{1}{9}\left(2y+z\right)+\frac{1}{3}\left(2z+y\right)+\frac{2}{3}\left(2x+z\right)=\frac{13}{9}x+\frac{5}{9}y+\frac{12}{9}z\)
\(=\frac{1}{9}\left(13x+5y+12z\right)=\frac{1}{9}.9=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{10}\)