K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để A là số tự nhiên thì \(\left\{{}\begin{matrix}3n+5⋮2n+1\\n\ge-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+3+7⋮2n+1\\n\ge-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1\in\left\{1;-1;7;-7\right\}\\n\ge-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow n\in\left\{0;3\right\}\)

b: Để B là số nguyên âm thì \(\left\{{}\begin{matrix}4n+1\inƯ\left(10\right)\\n< =-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+1\in\left\{1;-1;5;-5\right\}\\n< =-\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow n=-\dfrac{3}{2}\)

8 tháng 2 2022

Câu a thiếu TH n = -4 nữa á bạn 

31 tháng 5 2021

Chắc Không Vậy

AH
Akai Haruma
Giáo viên
27 tháng 1 2023

Lời giải:

Nếu $p,q$ đều lẻ thì $p-q, p+q$ đều chẵn.

$p-q, p+q$ đều là số nguyên tố khi mà $p-q=p+q=2$

$\Rightarrow q=0$ (vô lý) - loại

Do đó trong 2 số $p,q$ tồn tại ít nhất 1 số chẵn (là 2), số còn lại lẻ. Hiển nhiên do $p-q>0$ nên $p>q$. Do đó $q=2$ còn $p$ là số nguyên tố lẻ.

$p+q=p+2$

$p-q=p-2$

Nếu $p$ chia hết cho $3$ thì $p=3$. Khi đó $p-q=3-2=1$ không là snt (loại)

Nếu $p$ chia 3 dư 1 thì $p+2$ chia hết cho 3.

$\Rightarrow p+2=3\Rightarrow p=1$ (vô lý - loại)

Nếu $p$ chia 3 dư 2 thì $p-2$ chia hết cho 3

$\Rightarrow p-2=3$

$\Rightarrow p=5$. Khi đó: $p+2=5+2=7$ là số nguyên tố (thỏa mãn)

Vậy $(p,q)=(5,2)$

Làm được có mỗi câu a) thôi :(

Để a là số nguyên thì \(4n+5⋮2n+2\)

=> \(4n+4+1⋮2n+2\)

Nhận thấy \(4n+4⋮2n+2\) nhưng \(1⋮̸2n+2\left(n\inℤ\right)\)

Suy ra không có giá trị n để A là số nguyên.

6 tháng 3 2021

b, Đặt ƯCLN A = 4n + 5 ; 2n + 2 = d 

\(4n+5⋮d\)(1)

\(2n+2⋮d\Rightarrow4n+4⋮d\)(2)

 Lấy (1) - (2) ta được : \(4n+5-4n-4⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm