Cho tam giác ABC. Các điểm D,M thay đổi trên cạnh AB sao cho AD= BM. Qua D và M vẽ các đường song song với BC cắt ÁC thứ tự tại E và N. CMR: Tổng DE+ MN không phụ thuộc vào vị trí của D,M.
Lam ơn giúp tớ với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Kẻ NF // AB
=> góc NMF = MFB (SLT); góc NFM = FMB (SLT) mà cạnh chung MF
=> Tam giác MNF và tam giác FBM (g- c- g)
=> MN = BF và BM = NF => BM = NF = AD
+) Chứng minh được: tam giác ADE = NFC (g- c- g) => DE = FC
=> DE + MN = FC + BF = BC = không đổi
Vậy...
Do DE // BC
\(\Rightarrow\)\(\frac{DE}{BC}\)=\(\frac{AD}{AB}\)(Hệ quả Ta lét)
Mà AD=BM (gt)
Suy ra : \(\frac{AD}{AB}\)=\(\frac{BM}{AB}\)
\(\Rightarrow\)\(\frac{DE}{BC}\)=\(\frac{BM}{AB}\)
\(\Rightarrow\)DE=\(\frac{BC.BM}{AB}\)
Xét \(\Delta ABC\)có MN//BC
\(\frac{MN}{BC}\)=\(\frac{AM}{AB}\)(Hệ quả Talét)
\(\Rightarrow\)MN=\(\frac{BC.AM}{AB}\)
Suy ra DE+MN=\(\frac{BC.BM}{AB}\)+ \(\frac{BC.AM}{AB}\)
\(\Rightarrow\)DE+MN=\(\frac{BC.AB}{AB}\)= BC
Mà BC là đường cố định không đổi
\(\Rightarrow\)DE+MN không đổi