cho đường thẳng m,n vuông góc với AB lần lượt tại A và B . Qua trung Diểm O của AB kẻ đoạn thẳng d cat71 m,n lần lượt tại C,D so sánh OC và OD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAOC và ΔBOD ta có:
∠(CAO) = ∠(DBO) = 90o
OA = OB (vì O là trung điểm của AB).
∠(AOC) = ∠(BOD) (hai góc đối đỉnh)
Suy ra: ΔAOC = ΔBOD (g.c.g)
Do đó, OC = OD (hai cạnh huyền tương ứng).
Vậy: OC = OD
câu a CHỨNG Minh AB = DC CHỨ sao AB = BC ĐC
A) XÉT \(\Delta ABC\)VÀ \(\Delta CDA\)CÓ
\(\widehat{ACB}=\widehat{CAD}\)( VÌ AD // BC , HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG )
AC LÀ CẠNH CHUNG
\(\widehat{BAC}=\widehat{DCA}\)( VÌ AB // DC , HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG )
=> \(\Delta ABC=\Delta CDA\left(g-c-g\right)\)
=> AD = BC (HAI CẠNH TƯƠNG ỨNG )
=> AB = DC ( HAI CẠNH TƯƠNG ỨNG )
TA CÓ M LÀ TRUNG ĐIỂM CỦA BC
\(\Rightarrow BM=CM=\frac{BC}{2}\left(1\right)\)
TA CÓ N LÀ TRUNG ĐIỂM CỦA AD
\(\Rightarrow AN=DN=\frac{AD}{2}\left(2\right)\)
TỪ (1) VÀ (2)
\(BM=CM=\frac{BC}{2}\)
\(AN=DN=\frac{AD}{2}\)
MÀ AD = BC ( CMT)
=> \(BM=CM=AN=DN\)
XÉT \(\Delta BAM\)VÀ \(\Delta DCN\)CÓ
\(BA=DC\)(VÌ \(\Delta ABC=\Delta CDA\))
\(\widehat{ABM}=\widehat{CDN}\)(VÌ \(\Delta ABC=\Delta CDA\))
\(BM=DN\left(cmt\right)\)
=>\(\Delta BAM=\Delta DCN\left(c-g-c\right)\)
=> AM = CN (HAI CẠNH TƯƠNG ỨNG )
c) XÉT TỨ GIÁC ABCD
ta có \(AD=BC\left(cmt\right);AB=CD\left(cmt\right)\)
=> TỨ GIÁC ABCD LÀ HÌNH THOI
=> CÁC ĐƯỜNG CHÉO CẮT NHAU TẠI TRUNG ĐIỂM CỦA NÓ
=> \(OA=OC;OB=OD\)
mượn hình của Lê Trí Tiên làm tiếp câu (d)
vì M là trung điểm AD và O là trung điểm của AC => ON là đường trung bình tam giác ACD
=> ON //DC (1)
chứng minh tương tự ta có: OM là đường trung bình tam giác ACB
=> OM // AB mà AB // CD => OM // DC (2)
từ (1) (2) => M,O,N thằng hàng (đpcm)
Bạn tự vẽ hình nhé
a, Xét \(\Delta ABC\)và \(\Delta CDA\), ta có
\(\widehat{DAC}=\widehat{ACB}\left(gt\right)\)
AC: cạnh chung
\(\widehat{BAC}=\widehat{DCA}\left(gt\right)\)
do đó: \(\Delta ABC=\Delta CDA\left(g.c.g\right)\)
=>AD=BC(2 cạnh tương ứng)
=>AB=DC(2 cạnh tương ứng)
b, Ta có: BC=AD(CMT)
=>\(\frac{1}{2}BC=\frac{1}{2}AD\)=>MC=AN
Xét \(\Delta MAC\)và \(\Delta NCA\), ta có:
MC=AN(CMT)
\(\widehat{NAC}=\widehat{MCA}\) (2 góc so le trong)
AC:cạnh chung
do đó: \(\Delta MAC=\Delta NCA\left(c.g.c\right)\)
=>AM=CN(2 cạnh tương ứng)
c, Xét \(\Delta OAD\)và \(\Delta OCB\), ta có:
\(\widehat{DAO}=\widehat{BCO}\)(2 góc so le trong)
BC=AD(CMT)
\(\widehat{OBC}=\widehat{ADO}\)(2 góc so le trong)
do đó \(\Delta AOD=\Delta COB\left(g.c.g\right)\)
=> OA=OC(2 cạnh tương ứng)
=>OB=OD(2 cạnh tương ứng)
d,Sử dụng tiên đề Ơ-Clit...Bạn suy nghĩ đi mk chưa có cách giải chi tiết
Chúc bạn học tốt