cho hình chữ nhật ABCD có AB = 6cm AD= 4cm. gọi M,N lần lượt là trung điểm của AB và CD
a, tính độ dài các đoạn AM và BM
b, đo và cho biết số đo góc AMN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài: Cho hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N lần lượt là trung điểm của BH và CD .Tính số đo góc AMN
Trả lời: B1 vẽ hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N lần lượt là trung điểm của BH và CD
B2: Nhìn hình và tìm các làm -> ra.
gọi K là trung điểm AH.
\(\Delta AHB\)có MK là đường trung bình nên MK // AB ; MK = \(\frac{1}{2}AB\)
Mà \(AD\perp AB\)nên \(MK\perp AD\)
Xét \(\Delta AMD\)có \(MK\perp AD\); \(AH\perp MD\)nên K là trực tâm
\(\Rightarrow DK\perp AM\)
Mà DN = \(\frac{1}{2}CD\)
\(\Rightarrow MK=DN\)
tứ giác MKDN có MK = DN và MK // DN nên là hình bình hành
\(\Rightarrow\)DK // MN
\(\Rightarrow\)\(MN\perp AM\)
\(\Rightarrow\)\(\widehat{AMN}=90^o\)
từ điểm N hạ \(ON\perp DC\)
ABCD là hình chữ nhật=>\(\left\{{}\begin{matrix}AB=DC=4cm\\AD=BC=2cm\end{matrix}\right.\)
mà \(ABCD\) là hình chữ nhật \(=>BC\perp CD=>BC//ON\)
mà \(NM=NB=>ON\) là đường trung bình \(\Delta MBC\)
\(=>ON=\dfrac{1}{2}BC=\dfrac{1}{2}.2=1cm\)
do ON là đường trung bình \(=>MO=OC=\dfrac{1}{2}MC\)
mà \(MC=DM=\dfrac{1}{2}DC=\dfrac{1}{2}.4=2cm\)
\(=>MO=\dfrac{1}{2}MC=\dfrac{1}{2}.2=1cm\)
\(=>OD=DM+OM=1+2=3cm\)
xét \(\Delta DNO\) vuông tại O\(=>DN=\sqrt{ON^2+DO^2}=\sqrt{3^2+1^2}=\sqrt{10}cm\)
Xét hthang ABCD có:
M là trung điểm AD(gt)
N là trung điểm BC(gt)
=> MN là đường trung bình
\(\Rightarrow MN=\dfrac{AB+CD}{2}\)
\(\Rightarrow AB=2MN-CD\)
\(\Rightarrow AB=2.3-4=2\left(cm\right)\)
a)
Vì M là trung điểm của AB nên $AM = BM = \dfrac{1}{2}AB = 3(cm)$
b)
$∠AMN = 90^o$