\(\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+...+\frac{1}{12\times14}=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(a,\frac{3\times4\times7}{12\times8\times9}\)
\(=\frac{3\times4\times7}{3\times4\times8\times9}\)
\(=\frac{7}{72}\)
\(b,\frac{4\times5\times6}{12\times10\times8}\)
\(=\frac{4\times5\times3\times2}{4\times3\times5\times2\times8}\)
\(=\frac{1}{8}\)
\(c,\frac{5\times6\times7\times9}{12\times7\times27}\)
\(=\frac{5\times6\times7\times9}{6\times2\times7\times9\times3}\)
\(=\frac{5}{6}\)
\(d,\frac{5\times6\times7}{12\times14\times15}\)
\(=\frac{5\times6\times7}{6\times2\times7\times2\times5\times3}\)
\(=\frac{1}{12}\)
a) \(\frac{3\times4\times7}{12\times8\times9}=\frac{3\times4\times7}{3\times4\times8\times9}=\frac{7}{8\times9}=\frac{7}{72}\)
b) \(\frac{4\times5\times6}{12\times10\times8}=\frac{4\times5\times6}{6\times2\times2\times5\times4\times2}=\frac{1}{2\times2\times2}=\frac{1}{8}\)
c) \(\frac{5\times6\times7\times9}{12\times7\times27}=\frac{5\times6\times9}{12\times27}=\frac{5\times6\times9}{2\times6\times3\times9}=\frac{5}{2\times3}=\frac{5}{6}\)
d) \(\frac{5\times6\times7}{12\times14\times15}=\frac{5\times6\times7}{2\times6\times2\times7\times3\times5}=\frac{1}{2\times2\times3}=\frac{1}{12}\)
\(S.2=\frac{2}{2.4}+\frac{2}{4.6}+...........+\frac{2}{98.100}\)
\(S.2=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{98}-\frac{1}{100}\)
\(S.2=\frac{1}{2}-\frac{1}{100}\)
\(S.2=\frac{49}{100}\)
\(S=\frac{49}{100}:2\)
\(S=\frac{49}{200}\)
:V Làm sai hết rồi sai ngay từ bước đầu tiên.
\(\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-....-\frac{1}{9.10}\)
\(=\frac{1}{3.4}-\left(\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}\right)\)
\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(=\frac{1}{12}-\frac{3}{20}\)
\(=\frac{-11}{12}\)
\(\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{9.10}\)
= \(-\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
= \(-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
= \(-\left(\frac{1}{3}-\frac{1}{10}\right)\)
= \(-\frac{7}{30}\)
1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6+1/7-1/7+1/8-1/8+1/9+1/9-1/10
=1/2-1/10
=5/10-1/10
=4/10=2/5
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}+\frac{1}{8x9}+\frac{1}{9x10}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}-\frac{1}{10}\)
\(\frac{2}{5}\)
\(=\frac{1}{2}\times\left(\frac{2}{2\times4}+\frac{2}{4\times6}+...+\frac{2}{12\times14}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{12}-\frac{1}{14}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{2}\times\frac{3}{7}=\frac{3}{14}\)