Cho tam giác ABC vuông tại A , AB=AC. Gọi K là trung điểm của BC
a) CM: \(\Delta AKB=\Delta AKC\)và AK vuông goác với BC
b) Từ C vẽ đường thẳng vuông góc với BC cắt AB tại M, Gọi N là trung điểm của CM.
Chứng minh: CM // AK ; KN=1/2 BM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
=>ΔAKB=ΔAKC
=>góc AKB=góc AKC=180/2=90 độ
=>AK vuông góc BC
b: AK vuông góc BC
CE vuông góc CB
=>AK//CE
Xét ΔCEB vuông tại C có góc B=45 độ
nên ΔCEB vuông cân tại C
=>CE=CB
c: AK=1/2CE(do AK là đường trung bình của ΔCEB)
a) Xét tam giác AKB và tam giác AKC
. AK cạnh chung
. AB =AC (gt)
. BK = KC (gt )
Vậy tam giác AKB = tam giác AKC
Ta có : AK vuông góc BC
CM vuông góc BC
vậy : AK song song CM
a: Xét ΔAKB và ΔAKC có
AB=AC
AK chung
KB=KC
Do đó: ΔAKB=ΔAKC
a) Xét ΔAKB và ΔAKC có:
AB=AC(gt)
AK:cạnh chung
BK=CK(gt)
=> ΔAKB=ΔAKC(c.c.c)
=> \(\widehat{AKB}=\widehat{AKC}\)
Mà: \(\widehat{AKB}+\widehat{AKC}=180^o\)
=> \(\widehat{AKB}=\widehat{AKC}=90^o\)
=> \(AK\perp BC\)
b) Vì: \(EC\perp BC\left(gt\right)\)
Mad: \(AK\perp BC\left(cmt\right)\)
=> EC//AK