K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2016

O B A C E

Vì tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\)

Lại có \(\widehat{ACB}\) và \(\widehat{OCE}\) là hai góc đối đỉnh nên chúng bằng nhau. Nói cách khác \(\widehat{OCE}=\widehat{ABC}\)

Do OE = OB nên \(\widehat{OEB}=\widehat{OBE}\)

Mà \(\widehat{ABC}+\widehat{OBE}=90^o\Rightarrow\widehat{OCE}+\widehat{OEB}=90^o\Rightarrow\widehat{EOC}=90^o.\)

Vậy \(OE\perp OA.\)

25 tháng 11 2016

tks bạn nhiều nha

15 tháng 11 2016

giúp mình bài này vs

1: Xét ΔOBC có

OH vừa là đường cao, vừa là trung tuyến

=>ΔOBC cân tại O

=>OB=OC=R và OH là phân giác củagóc BOC

=>C thuọc (O)
Xét ΔOBA và ΔOCA có

OB=OC

góc BOA=góc COA

OA chung

=>ΔOBA=ΔOCA

=>góc OCA=90 độ

=>AC là tiếp tuyến của (O)

2: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM=AH*AO

a: Xét ΔOBC có 

OH vừa là đường cao, vừa là trung tuyến

=>ΔOBC cân tại O

=>OB=OC=R và OA là phân giác của góc BOC

=>C thuộc (O)

Xét ΔOBA và ΔOCA có

OB=OC

góc BOA=góc COA

OA chung

=>ΔOBA=ΔOCA

=>góc OCA=90 độ

=>AC là tiếp tuyến của (O)

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

a: Xét ΔOBC có 

OH vừa là đường cao, vừa là trung tuyến

=>ΔOBC cân tại O

=>OB=OC=R và OA là phân giác của góc BOC

=>C thuộc (O)

Xét ΔOBA và ΔOCA có

OB=OC

góc BOA=góc COA

OA chung

=>ΔOBA=ΔOCA

=>góc OCA=90 độ

=>AC là tiếp tuyến của (O)

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM