Tìm x biết
a 1/5×8+1/8×11+1/11×14 ....+1/x×(x+3)=101/1540
b 1+1/3+1/6+1/10+ ....+1/x×(x+1)÷2=1/1991/1993
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\)
=> x + 3 = 308
x = 308 - 3
x = 305
b, \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=1\frac{1991}{1993}\)
\(\Rightarrow\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{1}{2}.\frac{3984}{1993}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1992}{1993}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1992}{1993}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1992}{1993}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{1992}{1993}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{1992}{1993}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{1993}\)
=> x + 1 = 1993
x = 1993 - 1
x = 1992
a ,\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}.3\)
\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(x=308-3\)
\(x=305\)
a) 1/5.8+1/8.11+1/11.14+......+1/x.(x+3)=101/1540
1/3.3.[1/5.8+1/8,11+1/11.14+......+1/x.(x+3)=101/1540
1/3.[3/5.8+3/8.11+3/11.14+........+3/x.(x+3)]=101/1540
1/3.[1/5-1/8+1/8-1/11+1/11-1/14+....+1/x-1/x+3=101/1540
1/3.[1/5-1/x+3]=101/1540
1/5-1/x+3=101/1540.3
1/5-1/x+3=303/1540
1/x+3=1/3-303/1540=1/308
=>x+3=308 =>x=305
Vậy x=305
1/3.3(1/5.8+1/8.11+1/11.14+.....1/x(x+1)_101/1540
1/3.(1/5-1/8+1/8-1/11+1/11-1/14+....1/x+1/x+3)=101/1540
1/3.(1/5-1/x+3)=101/1540
1/5-1/x+3=101/1540/1/3=303/1540
1/x+3=1/5-303/1540=1/308
x+3+308
x=305
a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+....+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(=3.\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}.3\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x.3}=\frac{303}{1540}\)
\(=\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(=\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(=\frac{1}{x+3}=\frac{1}{308}\)
\(x+3=308\)
\(\Rightarrow x=305\)
Pikachu đơn giản thì làm thử đừng nói mà ko làm nha ^_^
duyệt đi
\(\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\frac{1}{5}+\frac{1}{8}-\frac{1}{8}+\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
\(\left(\frac{1}{5}-\frac{1}{x+3}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+...+\left(\frac{1}{x}-\frac{1}{x}\right)=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
=>x+3=308
x=308-3
x=305
Vậy x=305
a)\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{308}\)
\(\Leftrightarrow x+3=308\Leftrightarrow x=305\)
b ko hiểu đề