Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật biết AB=a, AD=a căn2, SA=a và SA vuông góc với mp đáy. Gọi M là trung điểm của AD và I là giao của BM và AC. Chứng minh (SAC) vuông góc (SMB)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Vì A M / / B C ⇒ I M I B = M A B C = 1 2 ⇒ d I ; A D d B ; A D = 1 3
|
Suy ra S Δ I M A = 1 2 d I ; A D . A M = 1 2 . 1 3 d B ; A D . 1 2 A D = S A B C D 12
Mà N là trung điểm của S C ⇒ d N ; A B C D = 1 2 d S ; A B C D
Vậy V A M N I V S . A B C D = d N ; A B C D d S ; A B C D . S Δ I M A S A B C D = 1 2 . 1 12 = 1 24
Đáp án là D
Coi hình chóp AMNI với điểm N làm đỉnh và AMI làm đáy
+) Từ N là trung điểm của SC nên đường cao
+) Lấy O là tâm hình chữ nhật ta có BM, AO là các trung tuyến nên I là trọng tâm tam giác ABD nên
+) Suy ra
a: CD vuông góc AD; CD vuông góc SA
=>CD vuông góc (SAD)
b: BD vuông góc AC; BD vuông góc SA
=>BD vuông góc (SAC)
=>(SBD) vuông góc (SAC)
Ta có: \(AC=\sqrt{AB^2+BC^2}=a\sqrt{3}\) ;
\(AM=\dfrac{AD}{2}=\dfrac{a\sqrt{2}}{2}\Rightarrow BM=\sqrt{AB^2+AM^2}=\dfrac{a\sqrt{6}}{2}\)
Áp dụng định lý talet:
\(\dfrac{AI}{IC}=\dfrac{MI}{BI}=\dfrac{AM}{BC}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}IC=\dfrac{2}{3}AC=\dfrac{2a\sqrt{3}}{3}\\IB=\dfrac{2}{3}BM=\dfrac{a\sqrt{6}}{3}\end{matrix}\right.\)
\(\Rightarrow IB^2+IC^2=2a^2=BC^2\)
\(\Rightarrow\Delta IBC\) vuông tại I \(\Rightarrow BM\perp AC\Rightarrow BM\perp\left(SAC\right)\)
Mà \(BM\in\left(SMB\right)\Rightarrow\left(SAC\right)\perp\left(SMB\right)\)