CMR 2 STN liên tiêp là 2 SNT cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Gọi ƯCLN(2n+1;6n+5)=d
Ta có: 2n+1 chia hết cho d; 6n+5 chia hết cho d
=>3(2n+1) chia hết cho d; 6n+5 chia hết cho d
=>6n+3 chia hết cho d; 6n+5 chia hết cho d
mà 3;5 là 2 số nguyên tố cùng nhau
nên 6n+3 và 6n+5 là 2 số nguyên tố cùng nhau
hay 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau
=>đpcm
Gọi ƯC(7n+13,2n+4)=d
Ta có: 7n+13 chia hết cho d=>2.(7n+13)=14n+26 chia hết cho d
2n+4 chia hết cho d=>7.(2n+4)=14n+28 chia hết cho d
=>14n+28-(14n+26) chia hết cho d
=>2 chia hết cho d
=>d=Ư(2)=(1,2)
Để 7n+13 và 2n+4 là nguyên tố cùng nhau
=>d=1
=>d khác 2
=>7n+13 không chia hết cho 2
=>7n+13 khác 2k
=>7k khác 2k-13
=>k khác (2k-13)/2
Gọi ƯCLN(a; b) là d. Theo đề bài, ta có:
n chia hết cho d => 2n chia hết cho d
2n+5 chia hết cho d
=> 2n+5-2n chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(a; b) = 1
=> a và b nguyên tố cùng nhau (đpcm)
tick nhé bạn
a) Đặt 2 số đấy là 2k+1 và 2k+3 và UWCLN của chúng là d . Ta có :
2k+1 chia hết cho d ; 2k+3 chia hết cho d => 2k+3 -(2k+1) chia hết cho d hay 2 chia hết cho d
d ko thể bằng 2 vì d là ước của 2 số lẻ => d=1 => 2 số lẻ liên tiếp nguyên tố cùng nhau .
b) Gọi ƯCLN của 2n+5 và 3n+7n là d . Ta có
2n+5 chia hết cho d => 6n+10 chia hết cho d
3n+7 chia hết cho d => 6n+ 14 chia hết cho d
=> 6n+14 -(6n+10) chia hết cho d hay 4 chia hết cho d mà d ko thể bằng 2 hay 4 vì d là ước của 2n+5 ( số lẻ ) => d=1
=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau .
a)Gọi 2 số lẻ liên tiếp là:a;a+1 và (a,a+1) là d.
\(\Rightarrow\)\(\hept{\begin{cases}a⋮d\\a+1⋮d\end{cases}}\)
\(\Rightarrow\)a+1-a\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi (4n+5,6n+7) là d.
\(\Rightarrow\)\(\hept{\begin{cases}4n+5⋮d\\6n+7⋮d\end{cases}}\)
\(\Rightarrow\)6(4n+5)-4(6n+7)\(⋮\)d
\(\Rightarrow\)24n+30-24n+28\(⋮\)d
\(\Rightarrow\)2\(⋮\)d
\(\Rightarrow\)d\(\in\){1;2}
Mà 4n+5 là số lẻ
\(\Rightarrow\)d=1
\(\Rightarrow\)4n+5 và 6n+7 là 2 số nguyên tố cùng nhau.
Vậy 4n+5 và 6n+7 là 2 số nguyên tố cùng nhau.
Gọi 2 số lẻ liên tiếp là a;a+2 (mà a € N )
Giả sử:(a;a+2)=d
=>a chia hết cho d
a+2 chia hết cho d
(a+2)-a chia hết cho d
=>2 chia hết cho d
Vậy d=1 hoặc d=2
Mà a và a+2 là 2 số lẻ=> d khác 2=> d=1
Vậy 2 số lẻ liên tiếp là 2 số nguyên tô cùng nhau
dễ thui ! xem trong bảng số nguyên tố ý ! trong sgk toán có mà ! k có thì chịu !!!
bn k cho mk nhé.mk là người đầu tiên đó