Cho a =100! . Chứng minh:
a) a+2 là hợp số
b)a+3 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $4\equiv 1\pmod 3$
$\Rightarrow 4^{20}\equiv 1\pmod 3$
$\Rightarrow 4^{20}-1\equiv 0\pmod 3$
Hay $4^{20}-1\vdots 3$. Mà $4^{20}-1>3$ nên nó là hợp số (đpcm)
b.
$1000001=10^6+1=(10^2)^3+1=(10^2+1)(10^4-10^2+1)$ là hợp số (đpcm)
a. ta có A chia hết cho 5 và A >5 thế nên A là hợp số
b. dễ thấy A không chia hết cho 5 vì :
\(A=5+25\left(1+5+5^2+..+5^{98}\right)\)
A chia hết cho 5 mà không chia hết cho 25, nên A không là số chính phương
a=15! chia hết cho 2
Nên a+2 chia hết cho 2 mà a+2>2 nên a có nhiều hơn 2 ước và là hợp số
a=15! chia hết cho 3
nên a+3 chia hết cho 3 mà a+3>3 nên a+3 có nhiều hơn 2 ước và là hợp số
......
a=15! chia hết cho 15
a+15 chia hết cho 15 nên a+15 là hợp số
b) Tương tự phần a
c có
Đặt c=2016!
c+2;c+3;c+4;..............;c+2016 là hợp số
mà dãy trên là 2015 số liên tiếp
Vậy tồn tại 2015 số liên tiếp là hợp số
a.
A = 5 + 5^2 + 5^3 +...+5^100
5A = 5^2 + 5^3 +...+5^101
4A = [5^2 + 5^3+...+5^101] - [5 + 5^2 +5^3+...+5^100]
A = \(\frac{5^{101}-5}{4}\)
b, Vì 5, 5^2,..., 5^100 đều là lũy thừa của 5 nên sẽ bằng 5[5n] chia hết cho 5
=> A là hợp số
c,
A = 5 + 5^2 + 5^3 +... + 5^100
A = [5 + 5^2] + [5^3 + 5^4] + ... + [5^99 + 5^100]
A = 30 + 5^2[5 + 5^2] + ... + 5^98[5 + 5^2]
A = 30 + 5^2.30 + ... + 5^98 . 30
=> A chia hết cho 30
d.
Vì A = \(\frac{5^{101}-5}{4}\)[cm trên]
Mà theo quy tắc thì 5101 có chữ số tận cùng là 25 [vì 5n = ...25 với mọi n E N*]
=> 5101-5 = ...20 [chỉ có thể là số có chữ số tận cùng là 0 bình phương lên]
Mà một số có chữ số tận cùng là 0 khi bình phương lên sẽ có ít nhất 2 chữ số 0 ở tận cùng
Mà A chỉ có 4 chữ số 0
=> A không phải số chính phương
Ủng hộ mik nếu thấy OK Nha mấy bạn >..<
A là hợp số vì các số hạng đều chia hết cho 5
các bn giải chi tiết nhé.bn nào nhanh và đúng thì mik sẽ k
a) Ta có: a+2
mà a=100
Suy ra: =100+2=102
mà 102=2x3x17
Nếu là hợp số thì có thể phân tích ra thừa số nguyên tố
Vì thế a+2 là hợp số
b) Sai đề rùi bạn ơi. Chứng minh a+3 là số nguyên tố cơ
câu b la 1; 3;5;7;9