CM biểu thức sau không phụ thuộc vào biến
a/ ( x - 2 )2 + 6( x+ 1 )(x - 3) - (x-2)(x2 + 2x +4 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)x^2-6x-2xy+12y\\=(x^2-2xy)-(6x-12y)\\=x(x-2y)-6(x-2y)\\=(x-2y)(x-6)\)
Bạn xem lại đề!
\(b\Big) (3-2x)(3+2x)+(2x+3)(2x-5)+4x\\=3^2-(2x)^2+(4x^2-10x+6x-15)+4x\\=9-4x^2+4x^2-10x+6x-15+4x\\=(9-15)+(-4x^2+4x^2)+(-10x+6x+4x)\\=-6\)
*Đã sửa đề*
\(c\Big) 4(x+1)^2+(2x-1)^2-8(x-1)(x+1)-4x\\=4(x^2+2x+1)+(2x)^2-2\cdot2x\cdot1x+1^2-8(x^2-1^2)-4x\\=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\\=(4x^2+4x^2-8x^2)+(8x-4x-4x)+(4+1+8)\\=13\)
*Đã sửa đề*
\(d\big) (3x+2)^2+(2x-7)^2-2(3x+2)(2x-7)-x^2+36x\\=[(3x+2)^2-2(3x+2)(2x-7)+(2x-7)^2]-x^2+36x\\=[(3x+2)-(2x-7)]^2-x^2+36x\\=(3x+2-2x+7)^2-x^2+36x\\=(x+9)^2-x^2+36x\\=(x+9-x)(x+9+x)+36x\\=9(2x+9)+36x\\=18x+81+36x\)
Bạn xem lại đề!
\(Toru\)
a) Ta có: \(\left(x-1\right)\left(x-2\right)\left(x^2+x+1\right)\left(x^2+2x+4\right)-x^6+9x^3\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x-2\right)\left(x^2+2x+4\right)-x^6+9x^3\)
\(=\left(x^3-1\right)\left(x^3-8\right)-x^6+9x^3\)
\(=x^6-9x^3+8-x^6+9x^3=8\)
b) Ta có: \(\left(\dfrac{1}{3}+2x\right)\left(\dfrac{1}{9}-\dfrac{2}{3}x+4x^2\right)-\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2}{3}x+\dfrac{1}{4}\right)\)
\(=\dfrac{1}{27}+8x^3-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c) Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
d) Ta có: \(\left(x^2-y^2\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)-x^6+y^6\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)-x^6+y^6\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)-x^6+y^6\)
\(=x^6-y^6-x^6+y^6=0\)
a: \(\left(x+2\right)^2-\left(x-3\right)^2-10x\)
\(=x^2+4x+4-\left(x^2-6x+9\right)-10x\)
\(=x^2-6x+4-x^2+6x-9\)
=-5
b: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2+x+1\right)-x\left(x-2\right)\left(x+2\right)\)
\(=x^3-3x^2+3x-1-x^3-x^2-x-2x^2-2x-2-x\left(x^2-4\right)\)
\(=-6x^2-3-x^3+4x\)
=>Đa thức này không phụ thuộc vào biến nha bạn
\(A=\left(3x-2\right)\left(2x+3\right)+x\left(x-6\right)-x^2-5x+2020\)
\(=6x^2+9x-4x-6+x^2-6x-x^2-5x+2020\)
\(=6x^2-6x+2014\)
Lời giải:
a.
$A=(x+6)^2-(x+2)^2+2[(x-5)^2-(x-3)^2]$
$=(x+6-x-2)(x+6+x+2)+2[(x-5-x+3)(x-5+x-3)]$
$=4(2x+8)+2(-2)(2x-8)$
$=4(2x+8)-4(2x-8)=4[(2x+8)-(2x-8)]=4.16=64$ không phụ thuộc vào $x$
b.
$B=(x^3-2^3)-(x^3+2^3)=-16$ không phụ thuộc vào $x$
c.
$C=x^4+2x^2-[(x^2+3)^2-(2x)^2]$
$=x^4+2x^2-(x^4+6x^2-4x^2)$
$=x^4+2x^2-(x^4+2x^2)=0$ không phụ thuộc vào $x$
a) Ta có: \(A=\left(x+6\right)^2+2\left(x-5\right)^2-\left(x+2\right)^2-2\left(x-3\right)^2\)
\(=x^2+12x+36+2\left(x^2-10x+25\right)-\left(x^2+4x+4\right)-2\left(x^2-6x+9\right)\)
\(=x^2+12x+36+2x^2-20x+50-x^2-4x-4-2x^2+12x-18\)
\(=34\)
b) Ta có: \(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-8-x^3-8\)
=-16
c) Ta có: \(C=x^4+2x^2-\left(x^2-2x+3\right)\left(x^2+2x+3\right)\)
\(=x^4+2x^2-\left[\left(x^2+3\right)^2-4x^2\right]\)
\(=x^4+2x^2-\left(x^4+6x^2+9\right)+4x^2\)
\(=-9\)
a: Ta có: \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(=x^3+x^2+x-x^3-x^2-x+5\)
=5
b: Ta có: \(x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
=3
c: Ta có: \(4\left(6-x\right)+x^2\left(3x+2\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)
\(=24-4x+3x^3+2x^2-5x^2+4x+3x^2-3x^3\)
=24
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
\(a,2\left(x^3-1\right)-2x^2\left(x+2x^4\right)+x\left(4x^5+4\right)=6\\ \Leftrightarrow2x^3-2-2x^3-4x^6+4x^6+4x-6=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow x=2\\ b,\left(2x\right)^2\left(4x-2\right)-\left(x^3-8x^3\right)=15\\ \Leftrightarrow4x^2\left(4x-2\right)+7x^3-15=0\\ \Leftrightarrow16x^3-8x^2+7x^3-15=0\\ \Leftrightarrow23x^3-8x^2-15=0\\ \Leftrightarrow23x^3-23x^2+15x^2-15x+15x-15=0\\ \Leftrightarrow\left(x-1\right)\left(23x^2+15x-15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\left(23x^2+15x-15>0\right)\end{matrix}\right.\)
Bài 1:
a: Ta có: \(2\left(x^3-1\right)-2x^2\left(2x^4+x\right)+x\left(4x^5+4\right)=6\)
\(\Leftrightarrow2x^3-2-4x^6-2x^3+4x^6+4x=6\)
\(\Leftrightarrow4x=8\)
hay x=2
b: Ta có: \(\left(2x\right)^2\cdot\left(4x-2\right)-\left(x^3-8x^3\right)=15\)
\(\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^3=15\)
\(\Leftrightarrow16x^3-8x^2+7x^3=15\)
\(\Leftrightarrow23x^3-8x^2-15=0\)
\(\Leftrightarrow23x^3-23x^2+15x^2-15=0\)
\(\Leftrightarrow23x^2\left(x-1\right)+15\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(23X^2+15x+15\right)=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Đề có sai không vậy bạn . Mình nói thật chứ không có câu đâu
Ta có :
\(\left(x-2\right)^2+6\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x^2+4-4x\right)+6\left(x^2-2x-3\right)-\left(x^3-2^3\right)\)
\(=x^2+4-4x+6x^2-12x-18x-x^3+8\)
\(=-x^3+7x^2-34x+12\)
Bạn kiểm tra lại đề.