K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2015

\(A=1+99..9^2+0,99..9^2=1+\left(10^n-1\right)^2+\left(\frac{10^n-1}{10^n}\right)^2\)

\(=\frac{10^{2n}+10^{2n}\left(10^n-1\right)^2+\left(10^n-1\right)^2}{10^{2n}}\)

\(=\frac{10^{4n}-2.10^{2n}.10^n+3.10^{2n}-2.10^n+1}{10^{2n}}\)

\(=\frac{10^{4n}+10^{2n}+1-2.10^{2n}.10^n+2.10^{2n}.1-2.10^n.1}{10^{2n}}\)

\(=\frac{\left(10^{2n}-10^n+1\right)^2}{10^{2n}}\)\(=\left(\frac{10^{2n}-10^n+1}{10^n}\right)^2\)

1 tháng 7 2015

Thay số vào thấy đề sai

8 tháng 1 2017

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\Rightarrow\frac{1}{a+b+c}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\Rightarrow c\left(a+b\right)\left(a+b+c\right)=ab\left(-a-b\right)\)

\(\Rightarrow\left(a+b\right)\left(ca+cb+c^2\right)+ab\left(a+b\right)=0\Rightarrow\left(a+b\right)\left(ca+cb+c^2+ab\right)=0\)

\(\Rightarrow\left(a+b\right)\left(c+a\right)\left(b+c\right)=0\)

=> Trong 3 số a,b,c có 2 số đối nhau.Giả sử a = -b thì a9 + b9 = 0.

Tương tự giả sử b = -c hay a = -c thì b99 + c99 = 0 hay c999 + a999 = 0

Vậy biểu thức cần tính bằng 0.

8 tháng 1 2017

bằng 0 quá dễ Hi Hi !!!

21 tháng 11 2018

dùng định lí Bê du bạn nhé

22 tháng 11 2018

Phạm Minh Đức đúng ròi đó :)

f(x) = ( x1999 + x999 + x99 + x9 + 2004 ) : ( x2 - 1 )

f(x) = ( x1999 + x999 + x99 + x9 + 2004 ) : ( x - 1 ) ( x + 1 )

Áp dụng định lý Bezout ta có 2 đa thức dư :

+) f(1) = 11999 + 1999 + 199 + 19 + 2004 = 2008

+) f(-1) = (-1)1999 + (-1)999 + (-1)99 + (-1)9 + 2004 = 2000

Vậy phép chia trên có 2 đa thức dư là f(1) = 2008 và f(-1) = 2000

29 tháng 6 2018

\(A=x^2+4x^4\)

\(\Rightarrow A=\left(2x^2\right)^2+4x^3+\left(x\right)^2-4x^3\)

\(\Rightarrow\left(2x^2+x\right)^2-4x^3\)

=> Ko là số chính phương

\(B=y^2-12y+36\)

\(B=y^2-2.6y+6^2\)

\(\Rightarrow B=\left(y-6\right)^2\)

=> Là số chính phương

11 tháng 8 2016

\(\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right)\left(\frac{1}{5}-\frac{1}{7}-\frac{2}{35}\right)\)

\(=\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right)\left(\frac{7}{35}-\frac{5}{35}-\frac{2}{35}\right)\)

\(=\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right).0\)

\(=0\)

11 tháng 8 2016

bài dễ thế không ai làm được hay thật

29 tháng 10 2018

\(S=\left(10-1\right)+\left(100-1\right)+\left(1000-1\right)+...+\left(100..00-1\right)\)

\(S=\left(10^1+10^2+10^3+...+10^n\right)-n\)

Đặt \(P=10^1+10^2+10^3+...+10^n\Rightarrow S=P-n\)

\(10P=10^2+10^3+...+10^{n+1}\)

\(10P-P=9P=\left(10^2+10^3+10^4+...+10^{n+1}\right)-\left(10^1+10^2+...+10^n\right)=10^{n+1}-10=10.\left(10^n-1\right)\)

\(P=\dfrac{10.\left(10^n-1\right)}{9}\Rightarrow S=\dfrac{10.\left(10^n-1\right)}{9}-n\)

Vô tình đi ngang qua :)

29 tháng 10 2018

lở => lỡ nha :>

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_n} - {u_{n - 1}} = \left( {2n - 1} \right) - \left[ {2\left( {n - 1} \right) - 1} \right] = 2\)

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2 \times 1 - 1 = 1,\;\;\;d = 2\)

\({S_{100}} = \frac{{100}}{2}\left[ {2 \times 1 + \left( {100 - 1} \right).2} \right] = 10\;000\)

Chọn đáp án C.

17 tháng 3 2016

A=(9/1999+99/999+999/9999).(1/5-1/4+1/20)

A=(9/1999+99/999+999/9999).(-1/20+1/20)

A=(9/1999+99/999+999/9999).0

A=0

Vì mọi số nhân vs 0 thì đều = 0 kể cả phân số

mk nhanh nhất ủng hộ nha

17 tháng 3 2016

\(A=\left(\frac{9}{1999}+\frac{99}{999}+\frac{999}{9999}\right)\cdot0\)

A=0

21 tháng 6 2015

1)Ta có:S=\(n_1^2+n_2^2+...+n_{10}^2\)=\(\left(n_1+n_2+...+n_{10}\right)^2-2.\left(n_1n_2+n_2n_3+.....+n_{10}.n_1\right)=2013^2-2.\left(n_1n_2+n_2n_3+.....+n_{10}.n_1\right)\)

Do 20132 chia 2 dư 1

\(2.\left(n_1n_2+n_2n_3+.....+n_{10}.n_1\right)\) chia hết cho 2

=>\(2013^2-2.\left(n_1n_2+n_2n_3+.....+n_{10}.n_1\right)-1\) chia hết cho 2

=>S-1 chia hết cho 2

Ác Mộng lam đủng rui. **** thui