tìm y va x biet 3xy+2y+2x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)
b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)
mik ko bít
I don't now
................................
.............
x^2 + 3xy + 2y^2 = 0
=> x^2 + xy + 2xy + 2y^2 = 0
=> x(x+y) + 2y ( x+ y ) = 0 =
=> ( x+ 2y)( x + y ) = 0
=> x = -2y hoặc x = -y
(+) x = -2y thay vào ta có :
8y^2 + 6y + 5 = 0 giải ra y => x
(+) thay x = -y ta có :
2y^2 - 3y + 5 = 0 tương tự
a/ \(x^2-3xy+2y^2=0\Leftrightarrow(x^2-2xy)-(xy-2y^2)=0.\) \(\Leftrightarrow x\left(x-2y\right)-y\left(x-2y\right)=0\Leftrightarrow\left(x-2y\right)\left(x-y\right)=0.\) \(\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases},với..x,y\in R.}\)
- Với x = y thay vào phương trình 2x2 - 3xy + 9 = 0 thì được phương trình : 2x2 - 3x2 + 9 = 0 Tức là x2 = 9 Vậy x = y =3 và x = y = - 3.
- Với x = 2y Thay vào phương trình 2x2 - 3xy + 9 = 0 được 8y2 - 6y2 + 9 = 0 Tức là 2y2 + 9 = 0 Phương trình vô nghiệm.
Trả lời x= y = 3 và x = y = - 3 .
......................?
mik ko biết
mong bn thông cảm
nha ................
a) x2+2y2+2xy-2y+1=0
\(\Leftrightarrow\)(x2+2xy+y2)+(y2-2y+1)=0
\(\Leftrightarrow\)(x+y)2+(y-1)2=0
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy x=-1, y=1
a)Từ \(x\cdot2y=\dfrac{2x}{y}\Rightarrow2x=x\cdot2y^2\)
Do \(x,y\ne 0\) nên \(2=2y^2\Rightarrow y^2=1\Rightarrow y=\pm1\)
*)Xét \(y=1\Rightarrow3x-2=2x\Rightarrow x=2\)
*)Xét \(y=-1\Rightarrow3x+2=-2x\Rightarrow x=-\dfrac{2}{5}\)
b)\(\left|4x-3\right|+\left|3xy-5\right|=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|3xy-5\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|4x-3\right|+\left|3xy-5\right|\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left|4x-3\right|=0\\\left|3xy-5\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}4x-3=0\\3xy-5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\3xy-5=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{20}{9}\end{matrix}\right.\)
x^3+y^3=3xy-1
x^3+y^3-3xy+1=0
(x+y)^3-3xy(x+y)-3xy+1=0
(x+y+1)(x^2+2xy+y^2-x-y+1)-3xy(x+y+1)=0
(x+y+1)(x^2+2xy+y^2-x-y+1-3xy)=0
suy ra +)x+y+1=0.VÌ x,y thuộc N* nên x+y+1 khác 0
+)x^2-xy+y^2+1-x-y=0
2(x^2-xy+y^2+1-x-y)=0
2x^2-2xy+2y^2+2-2x-2y=0
(x^2-2xy+y^2)+(x^2-2x+1)+(y^2-2y+1)=0
(x-y)^2+(x-1)^2+(y-1)^2=0
suy ra +)x-y=0
+)x-1=0
+)y-1=0
Vậy x=y=1