Cho x,y,z >0
Thoa \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}>=2\)
Tim Max A= xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Ta chứng minh: \(\frac{x-2}{x+1}\le\frac{x-2}{3}\)
\(\Leftrightarrow\frac{3\left(x-2\right)-\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)}\le0\)'
\(\Leftrightarrow\frac{-\left(x-2\right)^2}{3\left(x+1\right)}\le0\)(luôn đúng)
+) \(6=3\sqrt[3]{xyz}\le x+y+z\)
+) \(\text{Σ}\frac{x-2}{x+1}\le\frac{x-2+y-2+z-2}{3}\le\frac{0}{3}=0\)
Dấu = xảy ra khi x = y = z = 2
Xét giả thiết : \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\Leftrightarrow\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)\)
\(\Leftrightarrow\frac{1}{1+x}\ge\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
Tương tự : \(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\) ; \(\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân các bđt trên theo vế : \(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow1\ge8xyz\Rightarrow xyz\le\frac{1}{8}\)
Dấu "=" xảy ra khi \(\begin{cases}\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=2\\\frac{1}{1+x}=\frac{1}{1+y}=\frac{1}{1+z}\end{cases}\) \(\Leftrightarrow x=y=z=\frac{1}{2}\)
Vậy max (xyz) = 1/8 <=> x = y = z = 1/2
Từ \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)
\(\Rightarrow\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)\)
\(=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
C/m tương tự cũng có \(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\)
\(\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân 3 vế của các bất đẳng thức trên lại ta được
\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow1\ge8xyz\)
\(\Leftrightarrow xyz\le\frac{1}{8}\)
Dấu "='' khi \(x=y=z=\frac{1}{2}\)
Vậy .......
ta có \(\frac{2}{\sqrt{x}}-z=\frac{2\sqrt{xyz}}{\sqrt{x}}-z\)\(=2\sqrt{yz}-z\le y+z-z=y\)THEO bđt côsi
Tương tự \(\frac{2}{\sqrt{y}}-x\le z\)và \(\frac{2}{\sqrt{z}}-y\le x\)
\(\Rightarrow A\le xyz=1\)
VẬY MAX A=1 TẠI x=y=z=1
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
Ta có x3 + y3 - xy(x + y) = (x + y)(x - y)2 >= 0
<=> x3 + y3 >= xy(x + y)
<=> x3 + y3 + 1 >= xy(x+y+z)
<=> \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)
Tương tự
\(\frac{1}{x^3+z^3+1}\le\frac{1}{xz\left(x+y+z\right)}\)
\(\frac{1}{y^3+z^3+1}\le\frac{1}{yz\left(x+y+z\right)}\)
Từ đó ta có VT \(\le\)\(\frac{1}{xy\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}\)
= 1 (qui đồng là ra nha)
Vậy GTLN là 1 đạt được khi x = y = z = 1
Ta có: \(\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
Tương tự cho 2 cái còn lại:
\(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(z+1\right)\left(x+1\right)}};\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)
Nhân theo vế ta được:
\(\frac{1}{1+x}\cdot\frac{1}{1+y}\cdot\frac{1}{1+z}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)\(\Rightarrow xyz\le\frac{1}{8}\)
Dấu = khi \(\hept{\begin{cases}x=y=z\\\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=2\end{cases}}\Leftrightarrow x=y=z=\frac{1}{2}\)