K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016

ta có \(\left(7^n+1\right).\left(7^n+2\right)\)

    \(\Rightarrow7^n.\left(1+2\right)=7^n.3\)

     \(\Rightarrow7^n.3\) chia hết cho 3

12 tháng 6 2017

a) Với mọi n là số lẻ hoặc số chẵn thì \(A=\left(n+6\right)\left(n+7\right)\) luôn luôn là số chẵn . Do đó \(A⋮2\)với mọi \(n\in Z\)

b) \(B=n\left(n+1\right)+3\)

Vì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên là số chẵn , do đó \(n\left(n+1\right)⋮2\), nhưng 3 không chia hết cho 2 

\(\Rightarrow\)B không chia hết cho 2 với mọi \(n\in Z\)

12 tháng 6 2017

Nếu n là số chẵn thì (n + 6) chia hết cho 2 

=> (n + 6)(n + 7) chia hết cho 2 

Nếu n là số lẻ thì (n + 7) chia hết cho 2 

=> (n + 6)(n + 7) chia hết cho 2 

Vậy với mọi n nguye thì (n + 6)(n + 7) đều chia hết cho 2 

11 tháng 3 2018

Mình có cách hay hơn nha !

Xét 2^n.(2^n+1).(2^n+2)

Ta thấy 2^n;2^n+1;2^n+2 là 3 số tự nhiên liên tiếp nên trong 3 số có 1 số chia hết cho 3

=> 2^n.(2^n+1).(2^n+2) chia hết cho 3

Mà 2^n và 3 là 2 số nguyên tố cùng nhau

=> (2^n+1).(2^n+2) chia hết cho 3

Tk mk nha

11 tháng 3 2018

Đây là KQ của mik

Ta có: \(\left(2^n+1\right)\left(2^n+2\right)\)

\(=4^n+2^n\left(1+2\right)+2\)

Suy ra: \(=\left(4^n+2\right)+3\cdot2^n\)

Mặt khác: \(4^n\equiv1\)(mod 3)

Suy ra: \(\left(2^n+1\right)\left(2^n+2\right)\equiv3+3\cdot2^n=3\left(2^n+1\right)\)(mod 3)

Vậy: .....................

22 tháng 1 2018

a) Ta xét các trường hợp:

+)  Với n = 3k  \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)

Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.

+)  Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)

Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)

+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)

Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.

b) Tương tự bài trên.

11 tháng 10 2021

\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)

22 tháng 10 2021

tui chiuj

27 tháng 10 2017

Bài 2:Tìm x biết

(4x+3)3+(5−7x)3+(3x−8)3=0\" id=\"MathJax-Element-4-Frame\">\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)

\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)

\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)

\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)

\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)

 

26 tháng 7 2019

M bị phê đá à con

Bài 1 : 

Gọi 3 số chẵn liên tiếp là \(2a-2,2a,2a+2\)

Tích 3 số \(\left(2a-2\right)2a\left(2a+2\right)=8.\left(a-1\right)a\left(a+1\right)\)

Vì \(\left(a-1\right)a\left(a+1\right)⋮3\)\(\Leftrightarrow\left(a-1\right)a\left(a+1\right)⋮6\)

nên \(\left(2a-2\right).2a.\left(2a+2\right)\)

Vậy \(\left(2a-2\right).2a.\left(2a+2\right)\)

Bài 2 

a) \(\left(5^n-1\right)⋮4\)

Nếu \(n=1\)thì \(5^n-1=4⋮4\)

Nếu \(n>1\)thì \(5^n\)có hai chữ số tận cùng là \(25\Rightarrow5^n-1\)có hai chữ số tận cùng là \(24\),chia hết cho  \(4\)

Vậy \(\left(5^n-1\right)⋮4\)

b) \(\left(10^n+18n-1\right)⋮27\)

Ta có :\(10^n-1=99.....9\)(n chữ số 9)

\(\Rightarrow10^n+18n^{ }-1=99...9+18n=9.\left(11....1+2n\right)\)(n chữ số 1 )

Ta có \(\left(11....1+2n\right)⋮3\)( Vì \(11...1+2n\)có tổng các chữ số bằng \(3n⋮3\)

\(\Rightarrow\left(10^n+18n-1\right)⋮9.3\)hay \(\left(10^n+18n-1\right)⋮27\)

Chúc bạn học tốt ( -_- )

18 tháng 5 2017

\(A=n^2+n+1\left(n\in N\right)\\ A=n\cdot n+n\cdot1+1\\ A=n\cdot\left(n+1\right)+1\)

a) Ta có: \(n\cdot\left(n+1\right)\) là tích hai số tự nhiên liên tiếp, sẽ có một trong hai số là số chẵn \(\Rightarrow n\cdot\left(n+1\right)⋮2\)

\(1⋮̸2\) \(\Rightarrow n\cdot\left(n+1\right)+1⋮̸2\Leftrightarrow A⋮̸2\)

Vậy \(A⋮̸2\)

b)

Ta có: \(n\cdot\left(n+1\right)\) là tích hai số tự nhiên liên tiếp có chữ số tận cùng là 0, 2, 6 \(\Rightarrow\) \(n\cdot\left(n+1\right)+1\) có chữ số tận cùng là 1, 3, 7 không chia hết chia 5

Vậy \(A⋮̸5\)

18 tháng 5 2017

\(A=n^2+n+1=n\left(n+1\right)+1\left(n\in N\right)\)

a) Vì n và n+1 là 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp sẽ có một số chẵn .

=> n(n+1) là số chẵn

=> n(n+1) + 1 là số lẻ

=> A không chia hết cho 2 ( đpcm )

b) Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9

=> n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9

=> n(n+1) có thể có tận cùng là 0;2;6

=> n(n+1)+1 có tận cùng là 1;3;7

Vậy A không chia hết cho 5 ( đpcm)