cho đa thức: f(x)=99x+98x2+97x3+... +2x98+x99+1. tính f(-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm số TỰ NHIÊN NHỎ NHẤT SAO CHO KHI CHIA NÓ CHO 4,5,6 LẦN LƯỢT CÓ SỐ DƯ LÀ 3,4,5 VÀ SỐ ĐÓ CHIA HẾT CHO 13
Ta có \(x=100\Rightarrow x-1=99\)
\(f\left(x\right)=x^8-\left(x-1\right)x^7-...-\left(x-1\right)x+25\)
\(=x^8-x^8+x^7-...-x^2+x=x+25\)
\(\Rightarrow f\left(100\right)=100+25=125\)
\(a) f ( x ) = 2 x ^4 + 3 x ^2 − x + 1 − x ^2 − x ^4 − 6 x ^3\)
\(= ( 2 x ^4 − x ^4 ) − 6 x ^3 + ( 3 x ^2 − x ^2 ) − x + 1\)
\(= x ^4 − 6 x ^3 + 2 x ^2 − x + 1\)
\(g ( x ) = 10 x ^3 + 3 − x ^4 − 4 x ^3 + 4 x − 2 x ^2\)
\(= − x ^4 + ( 10 x ^3 − 4 x ^3 ) − 2 x ^2 + 4 x + 3\)
\(= − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(b) f ( x ) + g ( x ) = x ^4 − 6 x ^3 + 2 x ^2 − x + 1 − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(= ( x ^4 − x ^4 ) + ( − 6 x ^3 + 6 x ^3 ) + ( 2 x ^2 − 2 x ^2 ) + ( − x + 4 x ) + ( 1 + 3 )\)
\(= 3 x + 4\)
c)Có \(h ( x ) = f ( x ) + g ( x ) = 3 x + 4\)
\(Cho h ( x ) = 0 ⇒ 3 x + 4 = 0\)
\(⇒ 3 x = − 4\)
\(⇒ x = − \frac{4 }{3} \)
Vậy \(x=-\frac{4}{3}\) là nghiệm của \(h ( x ) \)
a, f(1) = 100 + 99 + ... + 2 + 1 + 1
=> f(x) = (100 + 1) . 100 : 2 + 1 "100 là số số hạng từ 1 -> 100"
=> f(x) = 4951
Hihi..
b, g(1) = 1 + 1 + 1 +...+ 1 + 1 (2016 số 1 theo cách lấy số mũ lớn nhất của x cộng thêm 1)
g(1) = 1 . 2016
g(1) = 2016
g(-1) = 1 + (-1) + (-1)2 + ... + (-1)2014 + (-1)2015
g(-1) = [ 1 + (-1)2 + ... + (-1)2014 ] + [ (-1) + (-1)3 + ... + (-1)2015 ]
g(-1) = [ 1 . 1008 ] + [ (-1) . 1008 ]
g(-1) = 1008 - 1008
g(-1) = 0
k nha!!
C = 1×99 + 2×98 + 3×97 + ... + 98×2 + 99×1
C = 1×(100 - 1) + 2×(100 - 2) + 3×(100 - 3) + ... + 98×(100 - 98) + 99×(100 - 99)
C = 1×100 - 12 + 2×100 - 22 + 3×100 - 32 + ... + 98×100 - 982 + 99×100 - 992
C = (1×100 + 2×100 + 3×100 + ... + 98×100 + 99×100) - (12 + 22 + 32 + ... + 992)
C = 100×(1 + 2 + 3 + ... + 98 + 99) - [(1 + 0)×1 + (1 + 1)×2 + (1 + 2)×3 + ... + (1 + 98)×99]
C = 100×(1 + 99)×99:2 + (1 + 0×1 + 2 + 1×2 + 3 + 2×3 + ... + 99 + 98×99)
C = 50×100×99 + [(1 + 2 + 3 + ... + 99) + (0×1 + 1×2 + 2×3 + ... + 98×99)]
C = 495000 + [(1+99)×99:2 + (0×1 + 1×2 + 2×3 + ... + 98×99)]
C = 495000 + 50 × 99 + (0×1 + 1×2 + 2×3 + ... + 98×99)
C = 495000 + 4950 + (0×1 + 1×2 + 2×3 + ... + 98×99)
Đặt A = 0×1 + 1×2 + 2×3 + ... + 98×99
3A = 1×2×(3-0) + 2×3×(4-1) + ... + 98×99×(100-97)
3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + ... + 98×99×100 - 97×98×99
3A = (1×2×3 + 2×3×4 + ... + 98×99×100) - (0×1×2 + 1×2×3 + ... + 97×98×99)
3A = 98×99×100
A = 98×33×100
A = 323400
C = 495000 + 4950 + 323400
C = 823350
C = 1×99 + 2×98 + 3×97 + ... + 98×2 + 99×1
C = 1×(100 - 1) + 2×(100 - 2) + 3×(100 - 3) + ... + 98×(100 - 98) + 99×(100 - 99)
C = 1×100 - 12 + 2×100 - 22 + 3×100 - 32 + ... + 98×100 - 982 + 99×100 - 992
C = (1×100 + 2×100 + 3×100 + ... + 98×100 + 99×100) - (12 + 22 + 32 + ... + 992)
C = 100×(1 + 2 + 3 + ... + 98 + 99) - [(1 + 0)×1 + (1 + 1)×2 + (1 + 2)×3 + ... + (1 + 98)×99]
C = 100×(1 + 99)×99:2 + (1 + 0×1 + 2 + 1×2 + 3 + 2×3 + ... + 99 + 98×99)
C = 50×100×99 + [(1 + 2 + 3 + ... + 99) + (0×1 + 1×2 + 2×3 + ... + 98×99)]
C = 495000 + [(1+99)×99:2 + (0×1 + 1×2 + 2×3 + ... + 98×99)]
C = 495000 + 50 × 99 + (0×1 + 1×2 + 2×3 + ... + 98×99)
C = 495000 + 4950 + (0×1 + 1×2 + 2×3 + ... + 98×99)
Đặt A = 0×1 + 1×2 + 2×3 + ... + 98×99
3A = 1×2×(3-0) + 2×3×(4-1) + ... + 98×99×(100-97)
3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + ... + 98×99×100 - 97×98×99
3A = (1×2×3 + 2×3×4 + ... + 98×99×100) - (0×1×2 + 1×2×3 + ... + 97×98×99)
3A = 98×99×100
A = 98×33×100
A = 323400
C = 495000 + 4950 + 323400
C = 823350
Lời giải:
$f(x)=99x+98x^2+97x^3+....+2x^{98}+x^{99}+1$
$f(-1)=-99+98-97+96-....+2-1+1$
$=-1+2-3+4+....-97+98-99+1$
$=(-1+2)+(-3+4)+...+(-97+98)-99+1$
$=1+1+...+1-99+1$
$=49-99+1=-49$