1/2+1/4+1/8+1/16+......+/256+1/512
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}+\frac{1}{512}\)
\(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(A\cdot2-A=1-\frac{1}{512}\)
\(A=\frac{511}{512}\)
Ta có :1/2+1/4=1-1/4=3/4
1/2+1/4+1/8=1-1/8=7/8
Tương tự
Vậy 1/2+1/4+1/8+1/16+....+1/256+1/512
=1-1/512
=511/512
Đặt A=1/2+1/4+1/6+1/8+1/16+...+1/256+1/512
=(1/2+1/4+1/8+1/16+...+1/256+1/256-1/512)+1/6
=(1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+...+1/128-1/256+1/256-1/512)+1/6
=1-1/512+1/6
=1789/1536
Vậy A=1789/1536
Đặt A=1/2+1/2+1/8+1/16+.....+1/256+1/512
2A=1+1/2+1/4+1/8+.....+1/128+1/256
2A-A=1-1/512
A=511/512
1/2 + 1/4 + 1/8 + 1/16 + ... + 1/256 + 1/512
= 256/512 + 128/512 + 64/512 + ... + 2/512 + 1/512
= 256 + 128 + 64 + .. + 2 + 1 / 512
= ???????
s=1/2+1/4+1/8+1/16+.....+1/256+1/512
sx2=(1/2+1/4+1/8+1/16+....+1/256+1/512)x2
sx2=1+1/2+1/4+1/8+......+1/126+1/256
sx2-s=(1+1/2+1/4+1/8+......+1/256)-(1/2+1/4+1/8+1/16++.....+1/256+1/512)
1+1/2+1/4+1/8+......+1/256-1/2-1/4-1/8-1/16-.....1/256-1/512
=1-1/512=511/512
Vậy dãy số đó là:
1/2 + 1/4 + 1/8 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 =
256/512 + 128/512 + 64/512 + 32/512 + 16/512 + 8/512 + 4/512 + 2/512 + 1/512 511/512
Đáp số: 511/512
1 + 1 = 2
2 + 2 = 4
4 + 4 = 8
8 + 8 = 16
16 + 16 = 32
32 + 32 = 64
64 + 64 = 128
128 + 128 = 256
256 + 256 = 512
512 + 512 = 1024
1024 + 1024 = 2048
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128=265
256+256=512
512+512=1024
1024+1024=2048
Học tốt ^_^
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128=256
256+256=512
512+512=1024
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128=156
256+256=512
512+512=1024
Cho \(a=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+....+\frac{1}{512}\)
Nên \(2a=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(2a-a=a=1-\frac{1}{512}=\frac{511}{512}\)
Vậy \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}=\frac{511}{512}\)
Bài này dễ.
Giải:
Đặt tổng trên là A, ta có:
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}+\frac{1}{512}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(A=1-\frac{1}{1024}\)
\(A=\frac{1023}{1024}\)
Chúc bạn học tốt.