K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2016

PT <=> 20x2 + 10y2 - 4xy - 76x - 12y + 82 = 0

<=> (19x2 - 76x + 76) + (6y2 - 12y + 6) + (x2 - 4xy + 4y2) = 0

<=> 19(x - 2)2 + 6(y - 1)2 + (x - 2y)2 = 0

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

7 tháng 7 2020

:))

\(10x^2+5y^2-2xy-38x-6y+41=0\)

\(\Leftrightarrow\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(9x^2-36x+36\right)+\left(4y^2-6y+4\right)=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(3x-6\right)^2+\left(2y-2\right)^2=0\)

\(\Leftrightarrow x=2;y=1\)

Sao tìm luôn được nghiệm nhỉ :V chả nhẽ phương trình ( 2 ) chỉ để thử nghiệm thôi sao ?

7 tháng 7 2020

Điều kiện \(\hept{\begin{cases}x^3+xy+6y\ge0\\y^3+x^2-1\ge0\end{cases}}\)

Ta có pt (1) \(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)

Tính \(\Delta'_x=-49\left(y-1\right)^2\ge0\Leftrightarrow y\ge1\)thay vào (1) ta được x=2 thỏa mãn hệ phương trình

KL: S={(2;1)}

3 tháng 2 2019

\(1,\hept{\begin{cases}10x^2+5y^2-2xy-38x-6y+41=0\left(1\right)\\3x^2-2y^2+5xy-17x-6y+20=0\left(2\right)\end{cases}}\)

Giải (1) : \(10x^2+5y^2-2xy-38x-6y+41=0\)

\(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)

Coi pt trên là pt bậc 2 ẩn x

Có \(\Delta'=\left(y+19\right)^2-50y^2+60y-410\)

           \(=-49y^2+98y-49\)

           \(=-49\left(y-1\right)^2\)

pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)

                      \(\Leftrightarrow-49\left(y-1\right)^2\ge0\)

                      \(\Leftrightarrow y=1\)

Thế vào pt (2) được x = 2

           

3 tháng 2 2019

\(2,\)Đặt\(\left(a\sqrt{a};b\sqrt{b};c\sqrt{c}\right)\rightarrow\left(x;y;z\right)\left(x,y,z>0\right)\)

\(\Rightarrow xy+yz+zx=1\)

Khi đó \(P=\frac{x^4}{x^2+y^2}+\frac{y^4}{y^2+z^2}+\frac{z^4}{x^2+z^2}\)

Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(x;y;z>0\right)\left(Cauchy-engel-type_3\right)\)được

\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{2}\)

Áp dụng bđt x2 + y2 + z2 > xy + yz + zx (tự chứng minh) ta được

\(P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{xy+yz+zx}{2}=\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}xy+yz+zx=1\\x=y=z\end{cases}}\)

                        \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

                        \(\Leftrightarrow\sqrt{a^3}=\sqrt{b^3}=\sqrt{c^3}=\frac{1}{\sqrt{3}}\)

                       \(\Leftrightarrow a^3=b^3=c^3=\frac{1}{3}\)

                       \(\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)

Vậy \(P_{min}=\frac{1}{2}\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)

8 tháng 9 2019

Bài này phân tích thành nhân tử là xong, lưu ý là \(\frac{5}{2}\)là nghiệm của phương trình trên nên phương trình có nhân tử là\(2y-5\)

\(Pt\Leftrightarrow6y^2-15y+20y-50=0\Leftrightarrow3y\left(2y-5\right)+10\left(2y-5\right)=0\Leftrightarrow\left(2y-5\right)\left(3y+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(2y-5\right)=0\\\left(3y+10\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{5}{2}\\y=\frac{-10}{3}\end{cases}}}\)

Vậy phương trình có 2 nghiệm là \(y=\frac{5}{2}\)\(y=\frac{-10}{3}\)

8 tháng 9 2019

\(6y^2+5y-50=0\)

\(6y^2+5y-1-49=0\)

\(6y^2+5y-1=49\)

\(6y^2+6y-y-1=49\)

\(6y\left(y+1\right)-\left(y+1\right)=49\)

\(\left(y+1\right)\left(6y-1\right)=49=\left(-1\right)\left(-49\right)=1.49=7.7=\left(-7\right)\left(-7\right)\)

\(\text{Bạn xét từng trường hợp là được}\)

\(\text{bạn k làm được thì nhắn mình, mình làm cho ^_^}\)

13 tháng 12 2018

Nguyệt đểu nhá, ra là hồi hè bà chs trò này:))

NV
10 tháng 10 2020

a/

\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)

\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)

Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm

b/

\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)

Pt vô nghiệm

NV
10 tháng 10 2020

c/

\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)

Vậy pt vô nghiệm

d/

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Do x;y;z nguyên dương nên vế phái luôn dương

Pt vô nghiệm